怎样证明函数无界?
1个回答
展开全部
反证法:假设A=a*sina是函数的上界,即对(0,+无穷)上所有实数,均有F(x)=xsinx<=A,此时sina必大于0。但当x=a+2π时,有F(a+2π)=(a+2π)*sin(a+2π)=(a+2π)*sina 。
因为a+2π>a,sina>0,所以F(a+2π)=(a+2π),*sina>a*sina=A,因此相矛盾了。所以函数f(x)为无界函数。
无界函数即不是有界函数的函数。也就是说,函数y=f(x)在定义域上只有上界(或只有下界);或者既没有上界又没有下界,称f(x)在定义域上无界,在定义域无界的函数称为无界函数 。
相关信息
1、有界性
设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。
2、单调性
设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调递增的;如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调递减的。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询