没太懂,两项都都展到二阶相乘不正好是四阶吗
你没理解泰勒展开,事实上泰勒展开是要展开成无穷阶,只是分母为4阶,超过4阶极限为0,直接忽略了,不是让你得到一个四阶的结果就不往后展开了,你要计算每一个四阶
(4)
ln(1-x^2) = -x^2 -(1/2)x^4 +o(x^4)
ln(1+x) = x -(1/2)x^2 +(1/3)x^3 +o(x^3)
ln(1-x) = -x -(1/2)x^2 -(1/3)x^3 +o(x^3)
ln(1+x).ln(1-x)
=[x -(1/2)x^2 +(1/3)x^3 +o(x^3)].[-x -(1/2)x^2 -(1/3)x^3 +o(x^3)]
=x.[-x -(1/2)x^2 -(1/3)x^3 +o(x^3)] -(1/2)x^2. [-x -(1/2)x^2 -(1/3)x^3 +o(x^3)]
+(1/3)x^3 .[-x -(1/2)x^2 -(1/3)x^3 +o(x^3)] +o(x^4)
=[-x^2 -(1/2)x^3 -(1/3)x^4 +o(x^4)] -(1/2) [-x^3 -(1/2)x^4 +o(x^4)]
+(1/3)[-x^4 +o(x^4)] +o(x^4)
=-x^2 +(-1/2 + 1/2)x^3 +( -1/3 +1/4 -1/3)x^4 +o(x^4)
=-x^2 - (5/12)x^4 +o(x^4)
ln(1+x)ln(1-x) -ln(1-x^2)
=[-x^2 - (5/12)x^4 +o(x^4) ]-[-x^2 -(1/2)x^4 +o(x^4)]
=(-5/12 + 1/2)x^4 +o(x^4)
=(1/12)x^4 +o(x^4)
lim(x->0) [ln(1+x)ln(1-x) -ln(1-x^2) ]/x^4
=lim(x->0) (1/12)x^4/x^4
=1/12
请问ln(1+x)这两项为什么要展开到三阶,展开到二阶相乘不正好是四次方吗
答案在我的展开之中
ln(1+x).ln(1-x)
=[x -(1/2)x^2 +(1/3)x^3 +o(x^3)].[-x -(1/2)x^2 -(1/3)x^3 +o(x^3)]
=x.[-x -(1/2)x^2 -(1/3)x^3 +o(x^3)]
不展开到-(1/3)x^3 , 少了一项 -(1/3)x^4
-(1/2)x^2.[-x -(1/2)x^2 -(1/3)x^3 +o(x^3)]
+(1/3)x^3. [-x -(1/2)x^2 -(1/3)x^3 +o(x^3)]
不展开到 (1/3x^3 , 少了一项 -(1/3)x^4
这导致泰勒展开的不完整!