sinx与cosx之间的转化是怎样的?

 我来答
亦是如此
高粉答主

2021-10-22 · 往前看,不要回头。
亦是如此
采纳数:6378 获赞数:544603

向TA提问 私信TA
展开全部

通过以下的诱导公式可以完成转换。

诱导公式:sin(π/2+α)=cosα 。

cos(π/2+α)=—sinx。

sin²x+cos²x=1,还可以通过求导的方法进行转化。

相关内容解释:

它们两个都是三角函数

snix=对边比斜边。

cosx=邻边比斜边。

tanx=对边比邻边。

三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。

三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。

常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。

小耳朵爱聊车
高粉答主

2021-10-22 · 说的都是干货,快来关注
知道大有可为答主
回答量:7378
采纳率:100%
帮助的人:311万
展开全部

cosx和sinx的转换公式为:

sinx=±√(1-cosx∧2)

cosx=±√(1-sinx∧2)

sin(π/2+x)=cosx

cos(π/2+x)=—sinx

证明:sinx∧2+cosx∧2=1

移项得:sinx∧2=1-cosx∧2

开平方得sinx=±√(1-cosx∧2)

同理sinx∧2+cosx∧2=1

移项得cosx∧2=1-sinx∧2

开平方得cosx=±√(1-sinx∧2)

诱导公式:

1、sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

2、sin(π/2-α)=cosα

3、cos(π/2-α)=sinα

4、tan(π/2-α)=cotα

5、cot(π/2-α)=tanα

6、sin(π/2+α)=cosα

7、cos(π/2+α)=-sinα

8、tan(π/2+α)=-cotα

9、cot(π/2+α)=-tanα sin(π-α)=sinα

10、cos(π-α)=-cosα

11、tan(π-α)=-tanα

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
甜美又柔和灬雪花s
2023-07-27 · TA获得超过273个赞
知道小有建树答主
回答量:2316
采纳率:100%
帮助的人:95.5万
展开全部
正弦函数(sinx)与余弦函数(cosx)之间是通过三角恒等式进行转化的。三角恒等式是一组用于描述三角函数之间关系的数学等式。其中,最常见的有以下两个:
1. 正弦余弦关系:
sin^2(x) + cos^2(x) = 1
这个等式表明,在任意给定的角度x下,正弦函数的平方加上余弦函数的平方等于1。因此,正弦函数和余弦函数之间有如下转化关系:
sin(x) = √(1 - cos^2(x))
cos(x) = √(1 - sin^2(x))
2. 余弦的和差公式:
cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
cos(a - b) = cos(a)cos(b) + sin(a)sin(b)
通过这两个和差公式,我们可以将任意角度的余弦函数转化为其他角度的余弦函数。
这些转化关系在解决三角函数的问题和推导中非常有用。通过这些恒等式,我们可以简化计算和化简复杂的三角表达式。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2023-07-26
知道答主
回答量:47
采纳率:0%
帮助的人:1.2万
展开全部
sinx和cosx之间的转化可以通过三角恒等式实现。最常见的三角恒等式是:

sin²x + cos²x = 1

从中可以得到 cos²x = 1 - sin²x ,并且通过开平方根可以得到 cosx=±√(1 - sin²x)。

另外,我们还可以使用另一个常见的三角恒等式来进行转换:

sin(π/2 - x) = cosx

这个恒等式表明,在一个直角三角形中,两条不同角度的锐角的正弦和余弦之间有特定的关系。这意味着 sinx = cos(π/2 - x)。所以可以通过这个关系,将sinx转换为cosx。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
唱歌技巧教学启航3S
2023-07-19
知道答主
回答量:88
采纳率:0%
帮助的人:1.3万
展开全部
sinx 和 cosx 之间存在的一个基本关系是他们两者可以通过一个 90 度的相位差进行转化,即 cosx = sin(x + π/2) 或 sinx = cos(x - π/2)。

另外一个常用的关系是由勾股定理而来的: sin²x + cos²x = 1。 积分和微分法则也常常用于将 sinx 和 cosx 互相转化,在微积分中,对sinx求导得到cosx,对cosx求导得到-sinx。

以上就是一些基本的关于 sinx 和 cosx 之间转化的方式。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式