∫[1/(1+t²)²]dt,令t=tanu,dt=sec²udu
=∫[sec²u/(1+tan²u)²]du
=∫(sec²u/sec^4u)du
=∫(1/sec²u)du
=∫cos²udu
=(1/2)∫(1+cos2u)du
=(1/2)∫du+(1/2)(1/2)∫cos2ud(2u)
=(1/2)u+(1/4)sin2u+C
=(1/2)u+(1/4)*2sinucosu+C
=(1/2)arctant+(1/2)[t/√(1+t²)][1/√(1+t²)]+C
=(1/2)arctant+(1/2)[t/(1+t²)]+C
=(1/2)arctant+t/[2(1+t²)]+C
不定积分的公式:
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
=∫[sec²u/(1+tan²u)²]du
=∫(sec²u/sec^4u)du
=∫(1/sec²u)du
=∫cos²udu
=(1/2)∫(1+cos2u)du
=(1/2)∫du+(1/2)(1/2)∫cos2ud(2u)
=(1/2)u+(1/4)sin2u+C
=(1/2)u+(1/4)*2sinucosu+C
=(1/2)arctant+(1/2)[t/√(1+t²)][1/√(1+t²)]+C
=(1/2)arctant+(1/2)[t/(1+t²)]+C
=(1/2)arctant+t/[2(1+t²)]+C