证明二项式系数平方和等于组合数C(2n,n) 详见图

 我来答
世纪网络17
2022-05-29 · TA获得超过5951个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:143万
展开全部
证 由二项式定理得 (1+x)^n=∑C(k,n)*x^k 所以(1+x)^(2n)= [C(0,n)+C(1,n)*x+...+C(n,n)*x^n]*[C(0,n)+C(1,n)*x+...+C(n,n)*x^n] =...+[C(0,n)*C(n,n)+C(1,n)*C(n-1,n)+...+C(n,n)*C(0,n)]x^n+...也就是说,在(1+x)^(2n)的展开式中,x^n的系数是:∑C(k,n)*C(n-k,n)=∑[C(k,n)]^2.另一方面,据二项式定理得:(1+x)^(2n)=∑[C(k,2n)]*x^k.即x^k的系数为C(n,2n).由此可得:∑[C(k,n)]^2=C(n,2n).
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式