对数的运算性质是什么?
展开全部
一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。
底数则要>0且≠1 真数>0并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大(a>1时)。如果底数一样,真数越小,函数值越大(0<a<1时)。
对数函数的运算公式
当a>0且a≠1时,M>0,N>0,那么:
(1)log(a)(MN)=log(a)(M)+log(a)(N)。
(2)log(a)(M/N)=log(a)(M)-log(a)(N)。
(3)log(a)(M^n)=nlog(a)(M)(n∈R)。
(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)。
(5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)。
(6)a^(log(b)n)=n^(log(b)a)。
(7)对数恒等式:a^log(a)N=N。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询