什么是不定积分的分部积分法?
展开全部
不定脊如并积分的分部积分法为Sudv=uvSvdu。之所以积分号用英文字母S的拉长来表示,主要是因为S是英文单词Sum的首字母。Sum是求和的意思,定积分就是一个求和,求和再取极限。不定积分和定积分有牛顿-莱布尼兹公式联系着。
将不定积分的分部积分公式Sudv=uvSvdu右边负项移项至左边得Sudv+Svdu=uv。对Sudv+Svdu=uv两边求导数会发现得到两个函数乘积的求导公式:乘橡银积uv的导数等于u的导数乘以v再加上v的导数乘以u。为了方便记忆,可以把不定积分的分部积分看成是两个函数乘积求导的逆运算。
分部积分的推导公式为:设函数,u=u(x) ,v=v(x)具有连续导数, 我们知道:(u·v)'=u'·v+u·v',通过移项可得:u·v'=(u·v)'-u'v对这个等式两边求樱迹不定积分,得:∫u·v'dx=u·v-∫u'·vdx,也可以表达为∫udv=u·v-∫u'·vdx。这就是分布积分法。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询