线性回归是什么意思?

 我来答
小知爱娱乐啊
高粉答主

2022-07-05 · 需要的话来找我哦,随时方便
小知爱娱乐啊
采纳数:780 获赞数:120163

向TA提问 私信TA
展开全部

没有具体数据要求,一般来说,数据越多越好。

通过线性回归算法,我们可能会得到很多的线性回归模型,但是不同的模型对于数据的拟合或者是描述能力是不一样的。我们的目的最终是需要找到一个能够最精确地描述数据之间关系的线性回归模型。这是就需要用到代价函数。

代价函数就是用来描述线性回归模型与正式数据之前的差异。如果完全没有差异,则说明此线性回归模型完全描述数据之前的关系。

一条趋势线代表着时间序列数据的长期走势。它告诉我们一组特定数据(如GDP、石油价格和股票价格)是否在一段时期内增长或下降。虽然我们可以用肉眼观察数据点在坐标系的位置大体画出趋势线,更恰当的方法是利用线性回归计算出趋势线的位置和斜率。

丿叛逆丨琉璃殇
2022-07-05
知道答主
回答量:39
采纳率:66%
帮助的人:2.2万
展开全部

线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。[1]
回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。


线性回归分析是根据一个或一组自变量的变动情况预测与其相关关系的某随机变量的未来值的一种方法。回归分析需要建立描述变量间相关关系的回归方程。根据自变量的个数,回归方程可以是一元回归,也可以是多元回归。如果回归函数是一个线性函数,则称变量间是线性相关。一元线性回归分析包括两个变量,一个是自变量,以x表示。另一个是因变量(预测变量)以y表示


假设x与y的已知数据是来自母体的一组样本观察值,这组观察值应满足下列条件:(1)观察值彼此独立,它们围绕回归线的波动服从正态分布;(2)沿回归直线方向母体观察值的方差处处相等;(3)x与y属于线性相关。多元线性回归分析是指影响预测变量的主要因素不止一个,多元回归分析的原理与一元回归基本相同,但运算较为复杂,一般要借助计算机完成

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式