多元函数的极限
多元函数的极限是多元函数微分学中非常重要的一个基础概念。本篇文章是我在微积分的学习中为了巩固多元函数极限的知识而记录的,方便随时进行复习。本文主要对多元函数的多重极限的基本概念进行了梳理,及一些求解的方法归档。
话不多说,看定义!
这种 定义十分高大上,然而却不像是说的人话,很多同学一看见就一脸懵逼。然而有的试卷偏偏喜欢出类似的证明题,同学们一旦碰到运用定义的来解决的题,就抓耳挠腮,或是想不起来定义的具体内容,或是不知道究竟如何运用它去说明极限存在。
接下来,我们对它的重点进行逐项分析,搞懂它究竟表达的是什么意思,通过这种方式来巩固对定义的记忆。
总结一下,原来的定义可以翻译为:
记住!根据邻域的概念,这个区域既可以是无限趋近于 点时函数值才趋近于 ,也可以是 点外一圈区域内都有函数值正好等于 。这正好与我们极限的几何意义完全符合。
通过这种方式,定义是不是比原来容易理解多了呢?希望通过这种方式,大家都能记住二重极限的 定义,并运用到证明中。
要点就是根据公式数学上的关系,尽量使得能够将原式推导到一个“ ”的关系上。通过 能任意取值,说明这样一个 也必存在。满足定义所有条件,则极限存在。
存在且值为0。
本题的一个关键点在于夹逼准则的变化应用。注意到我们在求解中采用了取绝对值的方式替换原表达式,以方便进行夹逼准则的使用。但是这样的做法解出来的不是绝对值的极限吗?为什么就能得到原来的结果了呢?首先请牢牢记住以下结论!
当极限为0时,绝对值的极限=原表达式的极限。
证明该结论的方法依然是利用 夹逼准则 ,当极限为0时,
又因为: ,利用夹逼准则就可以得到原极限也等于0啦。
证明极限不存在的方法,总体来说就只有一种,就是利用二维面上不同于一维上只能从坐标轴左右趋近于点,而是可以从无数条路线趋近于聚点的特点,只要任意线路趋近的极限不等于其他的极限,则极限不存在。
具体而言,首先可以用带任意系数的直线系 趋近。只要代入原函数后无法消掉系数 ,则说明此时极限必与 相关且不唯一极限不存在。
其次,若系数能够被消掉,则可以巧妙运用不同的曲线,如抛物线、直线、圆弧等来趋近于该点。若任意二者之间代入算出来的极限不等,也说明极限不存在。选取曲线时应根据原函数的特点。
2024-10-13 广告