椭圆中焦点三角形面积公式的推导是怎么样的?
2个回答
展开全部
如下:
1、离心率由正弦公式推导--F1P/sinα=F2P/sinβ=F1F2/sinθ,sinθ=sin(α+β),F1P+F2P=2a,F1F2=2c,e=c/a。
2、已知tan(θ/2)=sinα/(cosα+1)。
3、焦点三角形面积由余弦公式推导--∠F1PF2=θ,PF1=m,PF2=n。
4、则m+n=2a,在△F1PF2中,由余弦定理:(F1F2)^2=m^2+n^2-2mncosθ。
5、即4c^2=(m+n)^2-2mn-2mncosθ=4a^2-2mn(1+cosθ)。
6、所以mn(1+cosθ)=2a^2-2c^2=2b^2。
7、所以mn=2b^2/(1+cosθ)。
8、S=(mnsinθ)/2=b^2*sinθ/(1+cosθ)=b^2*tan(θ/2)。
椭圆焦点三角形
椭圆的焦点三角形是指以椭圆的两个焦点F1,F2与椭圆上任意一点P为顶点组成的三角形。在椭圆中,我们通常把焦点与过另一个焦点的弦所围成的三角形叫作焦点三角形。
类似地,我们也把顶点与过另一个顶点所对应的焦点弦围成的三角形叫顶焦点三角形。在椭圆的顶焦点三角形中有许多与椭圆焦点三角形相类似的几何特征,蕴涵着椭圆很多几何性质。
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算方案可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询