幂级数收敛的判别方法

 我来答
小慧说教育
2022-05-19 · TA获得超过4250个赞
知道大有可为答主
回答量:6420
采纳率:69%
帮助的人:163万
展开全部


幂级数收敛的判别方法:∑x^(2n+1)/(2n+1),
收敛半径R=lima/a=lim[2(n+1)+1]/(2n+1)=lim(2n+3)/(2n+1)=1。
当x=1时,幂级数变为∑1/(2n+1)。
>∑1/[2(n+1)]=(1/2)∑1/(n+1)。
后者发散,则级数发散;
当x=-1时,幂级数变为-∑1/(2n+1)。
因∑1/(2n+1)发散,则级数发散。
故收敛域是x∈(-1,1)。
即x∈(-1,1)时收敛,x∈(-∞,-1]∪[1,+∞)时发散。
建议:用比较判别法判断级数的收敛性时,通常构造另一级数。根据另一级数判断所求级数的敛散性。
倩倩生活百科
2022-05-27 · TA获得超过1537个赞
知道大有可为答主
回答量:1.9万
采纳率:99%
帮助的人:320万
展开全部



幂级数收敛的判别方法:∑x^(2n+1)/(2n+1),
收敛半径R=lima/a=lim[2(n+1)+1]/(2n+1)=lim(2n+3)/(2n+1)=1。
当x=1时,幂级数变为∑1/(2n+1)。
>∑1/[2(n+1)]=(1/2)∑1/(n+1)。
后者发散,则级数发散;
当x=-1时,幂级数变为-∑1/(2n+1)。
因∑1/(2n+1)发散,则级数发散。
故收敛域是x∈(-1,1)。
即x∈(-1,1)时收敛,x∈(-∞,-1]∪[1,+∞)时发散。
建议:用比较判别法判断级数的收敛性时,通常构造另一级数。根据另一级数判断所求级数的敛散性。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式