讨论函数f(x)=lim(1-x^2n)/(1+x^2n)x的连续性,若有间断点,判断其类型
展开全部
∵y=lim(x->∞){[(1-x^2n)/(1+x^2n)]x}
∴当│x│1时,y=-x
∵lim(x->1+)y=lim(x->1+)(-x)=-1
lim(x->1-)y=lim(x->1-)(x)=1
∴lim(x->1+)y≠lim(x->1-)y,即x=1是第一类间断点
∵lim(x->-1+)y=lim(x->-1+)(x)=-1
lim(x->-1-)y=lim(x->-1-)(-x)=1
∴lim(x->-1+)y≠lim(x->-1-)y,即x=-1是第一类间断点
故此函数只有两个是第一类间断点,它们分别是x=1与x=-1.
∴当│x│1时,y=-x
∵lim(x->1+)y=lim(x->1+)(-x)=-1
lim(x->1-)y=lim(x->1-)(x)=1
∴lim(x->1+)y≠lim(x->1-)y,即x=1是第一类间断点
∵lim(x->-1+)y=lim(x->-1+)(x)=-1
lim(x->-1-)y=lim(x->-1-)(-x)=1
∴lim(x->-1+)y≠lim(x->-1-)y,即x=-1是第一类间断点
故此函数只有两个是第一类间断点,它们分别是x=1与x=-1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询