已知f(x)=x(x-1)(x-2)(x-3)(x-4),则f''(x)=0的实根个数为?

 我来答
西域牛仔王4672747
2022-05-10 · 知道合伙人教育行家
西域牛仔王4672747
知道合伙人教育行家
采纳数:30592 获赞数:146330
毕业于河南师范大学计算数学专业,学士学位, 初、高中任教26年,发表论文8篇。

向TA提问 私信TA
展开全部
f(x)=0 有五个根,
f'(x)=0 有四个根,
那么 f''(x)=0 有三个根。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
六鸿卓0aY
2022-05-10
知道答主
回答量:13
采纳率:0%
帮助的人:9857
展开全部
解:∵f(x)=x(x-1)(x-2)(x-3)(x-4),∴f′(x)=(x-1)(x-2)(x-3)(x-4)+x[(x-1)(x-2)(x-3)(x-4)]′,∴f′(0)=(-1)×(-2)×(-3)×(-4)=24.故答案为:24.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式