a,b,c为正实数,求证:c/(a+b)+a/(b+c)+b/(c+a)大于等于3/2

 我来答
游戏解说17
2022-07-12 · TA获得超过951个赞
知道小有建树答主
回答量:313
采纳率:0%
帮助的人:64万
展开全部
左边
=(a+b+c)/(a+b)+(a+b+c)/(b+c)+(a+b+c)/(c+a)-3
=0.5×(a+b+b+c+c+a)*[1/(a+b)+1/(b+c)+1/(c+a)]-3
≥0.5×{3×[(a+b)(b+c)(c+a)]^1/3}×{3×[1/(a+b)×1/(b+c)×1/(c+a)]^1/3}-3
=0.5×3×3-3
=3/2
所以c/(a+b)+a/(b+c)+b/(c+a)≥3/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式