一个自然数除以13余12,除以11余9,符合要求的数最小是多少?急
1个回答
展开全部
即设
13P+12 = 11Q + 9
Q = P +(2P+3)/11
显然2P+3 被11整除,P最小时2P+3 = 11,此时P = (11-3)/2 = 4
Q 最小= 5
因此这个数最小是 13*4+12 = 64
13P+12 = 11Q + 9
Q = P +(2P+3)/11
显然2P+3 被11整除,P最小时2P+3 = 11,此时P = (11-3)/2 = 4
Q 最小= 5
因此这个数最小是 13*4+12 = 64
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
科哲生化
2024-08-26 广告
2024-08-26 广告
你说的是饮用水标准吗?引起食品不安全的微生物因素主要是其中的致病菌,产毒菌以及腐败菌等,因此菌落总数这一指标并不能恰当的反映应用水的安全情况,而应当对水中的一些具体有害微生物进行限制;取消这一指标,也是与国际标准接轨;另外对这一指标加以控制...
点击进入详情页
本回答由科哲生化提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询