y'-2y/(x+1)=(1+x)^2的通解,需要过程谢谢

 我来答
新科技17
2022-08-23 · TA获得超过5904个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.9万
展开全部
y'(x+1)-2y=(x+1)^3
两边求导,得
y"(x+1)-y'=3(x+1)^2
y"/(x+1)-y'/(x+1)^2 =3
两边积分,得
y'/(x+1)=3x+c
y'=3x(x+1)+c(x+1)
y=x^3+1.5x^2+c(0.5x^2+x)+k
所以
y=x^3+(1.5+0.5c)x^2+cx+k
其中c、k为常数.
把该解代入原微分方程,化简,得
x^3+3x^2+3x+c-2k=x^3+3x^2+3x+1
比较两边系数
得c-2k=1
所以k=(c-1)/2
所以原微分方程通解为
y=x^3+(1.5+0.5c)x^2+cx+(c-1)/2
其中c为常数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式