在三角形ABC中,点E是中线AD的中点,BE交AC于F,求证:AF=1/2FC
1个回答
展开全部
证明:取AC的中点G,连接EG
∵AE=ED,AG=GC
∴EG/CD=1/2,EG//BC
∴FG/FC=EG/BC
∵BC=2CD
∴FG/FC=1/4
∴FG/GC=1/3
∴AF/FC=(AG-FG)/(FG+GC)=(AG-GC/3)(FG/3+GC)=1/2
∴AF=1/2FC
∵AE=ED,AG=GC
∴EG/CD=1/2,EG//BC
∴FG/FC=EG/BC
∵BC=2CD
∴FG/FC=1/4
∴FG/GC=1/3
∴AF/FC=(AG-FG)/(FG+GC)=(AG-GC/3)(FG/3+GC)=1/2
∴AF=1/2FC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
创远信科
2024-07-24 广告
2024-07-24 广告
同轴线介电常数是指同轴电缆中介质对电场的响应能力,通常用ε_r表示,是介质相对于真空或空气的电容率。这一参数直接影响信号在电缆中的传播速度和效率。在选择同轴电缆时,需要考虑其介电常数,因为它与电缆的插入损耗、带宽和传输质量等性能密切相关。创...
点击进入详情页
本回答由创远信科提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询