已知关于x的方程x2+(n+1)x+2n-1=0的两根为整数,则整数n是______

 我来答
黑科技1718
2022-10-09 · TA获得超过5898个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:82.7万
展开全部
解题思路:要求n,由题意中方程x 2+(n+1)x+2n-1=0的两根为整数,所以它的判别式△=(n+1) 2-4(2n-1)为完全平方式,对其进行化简,得(n-3) 2-k 2=4,则n与k的关系进行讨论后可得答案.

∵x2+(n+1)x+2n-1=0的两根为整数,它的判别式为完全平方式,故可设
△=(n+1)2-4(2n-1)=k2(k为非负整数),即(n-3)2-k2=4,
∴满足上式的n、k只能是下列情况之一:

n−3+k=4
n−3−k=1或

n−3+k=−1
n−3−k=−4或

n−3+k=2
n−3−k=2或

n−3+k=−2
n−3−k=−2
解得n=1、或n=5.故答案为1或5

点评:
本题考点: 一元二次方程的整数根与有理根.

考点点评: 这道题考查了一元二次方程的整数根与有理根,以及其判别式的灵活应用,同学们应熟练掌握.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式