已知x,y,z都是实数,且x的平方+y的平方+z的平方=1,则xy+yz+xz的最大值为 多少
展开全部
是不是;;已知x,y,z都是实数,且x²+y²+z²=1,则xy+yz+xz的最小值为 多少
由(x+y)²=x²+y²+2xy≥0 可得:xy≥-(x²+y²)/2 .(1)
同理可得:yz≥-(y²+z²)/2 .(2)
xz≥-(x²+z²)/2 .(3)
(1)+(2)+(3)得:
xy+yz+xz≥-(x²+y²)/2 -(y²+z²)/2-(x²+z²)/2=-(x²+y²+z²﹚=-1
∴ xy+yz+xz的最小值为-1.
由(x+y)²=x²+y²+2xy≥0 可得:xy≥-(x²+y²)/2 .(1)
同理可得:yz≥-(y²+z²)/2 .(2)
xz≥-(x²+z²)/2 .(3)
(1)+(2)+(3)得:
xy+yz+xz≥-(x²+y²)/2 -(y²+z²)/2-(x²+z²)/2=-(x²+y²+z²﹚=-1
∴ xy+yz+xz的最小值为-1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询