已知x,y,z都是实数,且x的平方+y的平方+z的平方=1,则xy+yz+xz的最大值为 多少

 我来答
新科技17
2022-10-08 · TA获得超过5917个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:75.8万
展开全部
是不是;;已知x,y,z都是实数,且x²+y²+z²=1,则xy+yz+xz的最小值为 多少
由(x+y)²=x²+y²+2xy≥0 可得:xy≥-(x²+y²)/2 .(1)
同理可得:yz≥-(y²+z²)/2 .(2)
xz≥-(x²+z²)/2 .(3)
(1)+(2)+(3)得:
xy+yz+xz≥-(x²+y²)/2 -(y²+z²)/2-(x²+z²)/2=-(x²+y²+z²﹚=-1
∴ xy+yz+xz的最小值为-1.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式