如何区别概率密度函数和分布函数?
2022-08-03 · 知道合伙人教育行家
关注
展开全部
两者的定义
概率密度函数:用于直观地描述连续性随机变量(离散型的随机变量下该函数称为分布律),表示瞬时幅值落在某指定范围内的概率,因此是幅值的函数。连续样本空间情形下的概率称为概率密度,当试验次数无限增加,直方图趋近于光滑曲线,曲线下包围的面积表示概率,该曲线即这次试验样本的概率密度函数。
分布函数:用于描述随机变量落在任一区间上的概率。如果将x看成数轴上的随机点的坐标,那么,分布函数F(x)在x处的函数值就表示x落在区间(-∞上的概率。分布函数也称为概率累计函数。
区别
分布函数是概率密度函数从负无穷到正无穷上的积分;
在坐标轴上,概率密度函数的函数值y表示落在x点上的概率为y;分布函数的函数值y则表示x落在区间(-∞上的概率。
概率密度函数:用于直观地描述连续性随机变量(离散型的随机变量下该函数称为分布律),表示瞬时幅值落在某指定范围内的概率,因此是幅值的函数。连续样本空间情形下的概率称为概率密度,当试验次数无限增加,直方图趋近于光滑曲线,曲线下包围的面积表示概率,该曲线即这次试验样本的概率密度函数。
分布函数:用于描述随机变量落在任一区间上的概率。如果将x看成数轴上的随机点的坐标,那么,分布函数F(x)在x处的函数值就表示x落在区间(-∞上的概率。分布函数也称为概率累计函数。
区别
分布函数是概率密度函数从负无穷到正无穷上的积分;
在坐标轴上,概率密度函数的函数值y表示落在x点上的概率为y;分布函数的函数值y则表示x落在区间(-∞上的概率。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询