x^2y+y^2x=1的微分怎么求
1个回答
展开全部
x^(2y) + y^(2x) = 1
e^(2ylnx) + e^(2xlny) = 1
2(y'lnx+y/x)e^(2ylnx) + 2(lny + xy'/y)e^(2xlny) = 0
(y'xlnx+y)x^(2y) + (ylny + xy')y^(2x) = 0
y' = -[yx^(2y)+ylny y^(2x)]/[xlnx x^(2y)+xy^(2x)]
dy = {-[yx^(2y)+ylny y^(2x)]/[xlnx x^(2y)+xy^(2x)]}dx
e^(2ylnx) + e^(2xlny) = 1
2(y'lnx+y/x)e^(2ylnx) + 2(lny + xy'/y)e^(2xlny) = 0
(y'xlnx+y)x^(2y) + (ylny + xy')y^(2x) = 0
y' = -[yx^(2y)+ylny y^(2x)]/[xlnx x^(2y)+xy^(2x)]
dy = {-[yx^(2y)+ylny y^(2x)]/[xlnx x^(2y)+xy^(2x)]}dx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询