求直角三角形的三角函数关系
展开全部
在直角三角形中,
⑴a^2+b^2=c^2
[A+B=C=90°]
⑵sinA=a/c (即角A的对边比斜边)→正弦
cosA=b/c (即角A的邻边比斜边)→余弦
tanA=a/b (即角A的对边比邻边)→正切
cotA=b/a (即角A的邻边比对边)→余切
secA=c/b (即角A的斜边比邻边)→正割
cscA=c/a (即角A的斜边比对边)→余割
[sinB cosB tanB 同理可得]
⑶sinC=1
cosC=0
tanC不存在
[C=90°]
⑷sinA=cosB
sinAsinA+sinBsinB=1
[A+B=90°]
⑸sinA/cosA=tanA
tanA=1/cotA
⑴a^2+b^2=c^2
[A+B=C=90°]
⑵sinA=a/c (即角A的对边比斜边)→正弦
cosA=b/c (即角A的邻边比斜边)→余弦
tanA=a/b (即角A的对边比邻边)→正切
cotA=b/a (即角A的邻边比对边)→余切
secA=c/b (即角A的斜边比邻边)→正割
cscA=c/a (即角A的斜边比对边)→余割
[sinB cosB tanB 同理可得]
⑶sinC=1
cosC=0
tanC不存在
[C=90°]
⑷sinA=cosB
sinAsinA+sinBsinB=1
[A+B=90°]
⑸sinA/cosA=tanA
tanA=1/cotA
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询