如图,已知AB为圆O的直径,CD是弦,AB垂直CD于E,OF垂直AC于F,BE=OF?
1个回答
展开全部
证明:
在三角形ABC中,AB是直径,C是圆上的点
所以角ACB=90,即BC垂直于AC
OF垂直AC
所以OF平行BC
∵AB⊥CD
∴CE= 1/2CD=5√3cm.
在直角△OCE中,OC=OB=x+5(cm),
根据勾股定理可得:(x+5)^2=(5√3)^2+x^2
解得:x=5
∴tan∠COE= 5√3/5=√3,
∴∠COE=60°,
∴∠COD=120°,
∴扇形COD的面积是:(120π×10^2)/360= 100π/3平方厘米.
△COD的面积是:1/2CD•OE= 1/2×10√3×5=25√3平方厘米.
∴阴影部分的面积是:( 100π/3-25√3)平方厘米,7,如图如图如图如图,,,,⊙⊙⊙⊙O的弦的弦的弦的弦AB垂直于垂直于垂直于垂直于CD,,,,E为垂足为垂足为垂足为垂足,,,,AE=3,,,,BE=7,,,, 且且且且AB=CD,,,,则圆心则圆心则圆心则圆心O到到到到CD的距离是的距离是的距离是的距离是______...,2,阴影在哪儿?,1,证明:
在三角形ABC中,AB是直径,C是圆上的点
所以角ACB=90,即BC垂直于AC
OF垂直AC
所以OF平行BC
∵AB⊥CD
∴CE= 1/2CD=5√3cm.
在直角△OCE中,OC=OB=x+5(cm),
根据勾股定理可得:(x+5)^2=(5√3)^2+x^2
解得:x=5
∴tan∠COE= 5...,1,(1)证明:∵AB为⊙O的直径,
∴AC⊥BC
又∵OF⊥AC
∴OF∥BC
(2)证明:∵AB⊥CD
∴ BC = BD
∴∠CAB=∠BCD
又∵∠AFO=∠CEB=90°,OF=BE,
∴△AFO≌△CEB
(3)连接DO.
∵AB⊥CD
∴CE=1 2 CD=5 3 cm.
在直角△OCE中,...,0,如图,已知AB为圆O的直径,CD是弦,AB垂直CD于E,OF垂直AC于F,BE=OF
如图,已知AB为圆O的直径,CD是弦,AB垂直CD于E,OF垂直A求证:OF平行BC △AFO全等于△CEB 若EB=5,CD=10根号3 设OE=x,求x的值及阴影部分的面积
在三角形ABC中,AB是直径,C是圆上的点
所以角ACB=90,即BC垂直于AC
OF垂直AC
所以OF平行BC
∵AB⊥CD
∴CE= 1/2CD=5√3cm.
在直角△OCE中,OC=OB=x+5(cm),
根据勾股定理可得:(x+5)^2=(5√3)^2+x^2
解得:x=5
∴tan∠COE= 5√3/5=√3,
∴∠COE=60°,
∴∠COD=120°,
∴扇形COD的面积是:(120π×10^2)/360= 100π/3平方厘米.
△COD的面积是:1/2CD•OE= 1/2×10√3×5=25√3平方厘米.
∴阴影部分的面积是:( 100π/3-25√3)平方厘米,7,如图如图如图如图,,,,⊙⊙⊙⊙O的弦的弦的弦的弦AB垂直于垂直于垂直于垂直于CD,,,,E为垂足为垂足为垂足为垂足,,,,AE=3,,,,BE=7,,,, 且且且且AB=CD,,,,则圆心则圆心则圆心则圆心O到到到到CD的距离是的距离是的距离是的距离是______...,2,阴影在哪儿?,1,证明:
在三角形ABC中,AB是直径,C是圆上的点
所以角ACB=90,即BC垂直于AC
OF垂直AC
所以OF平行BC
∵AB⊥CD
∴CE= 1/2CD=5√3cm.
在直角△OCE中,OC=OB=x+5(cm),
根据勾股定理可得:(x+5)^2=(5√3)^2+x^2
解得:x=5
∴tan∠COE= 5...,1,(1)证明:∵AB为⊙O的直径,
∴AC⊥BC
又∵OF⊥AC
∴OF∥BC
(2)证明:∵AB⊥CD
∴ BC = BD
∴∠CAB=∠BCD
又∵∠AFO=∠CEB=90°,OF=BE,
∴△AFO≌△CEB
(3)连接DO.
∵AB⊥CD
∴CE=1 2 CD=5 3 cm.
在直角△OCE中,...,0,如图,已知AB为圆O的直径,CD是弦,AB垂直CD于E,OF垂直AC于F,BE=OF
如图,已知AB为圆O的直径,CD是弦,AB垂直CD于E,OF垂直A求证:OF平行BC △AFO全等于△CEB 若EB=5,CD=10根号3 设OE=x,求x的值及阴影部分的面积
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询