什么是参数方程

 我来答
NS138613
高粉答主

2022-12-22 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:142
采纳率:100%
帮助的人:2.4万
展开全部

一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数: 

平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数。

曲线的极坐标参数方程ρ=f(t),θ=g(t)。

圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标。

椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数。

双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数。

抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数。

并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,联系变数x、y的变数t叫做参变数。相对而言,直接给出点坐标间关系的方程为普通方程。

直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数。

扩展资料

积分的保号性:

如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。作为推论,如果两个等于0,那么任何可积函数在A上的积分等于0。

函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。

某个测度为0的集合上的函数值改变,不会影响它的积分值。如果两个函数几乎处处相同,那么它们的积分相同。如果对中任意元素A,可积函数f在A上的积分总等于(大于等于)可积函数g在A上的积分,那么f几乎处处等于(大于等于)g。

参考资料来源:百度百科-参数方程

参考资料来源:百度百科-积分

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式