如何解微分方程?
2个回答
展开全部
解:请把具体题目发过来,解微分方程为dy/dx+(1+xy³)/(1+x³y)=0,(1+x³y)dy+(1+xy³)dx=0,dy+x³ydy+dx+xy³dx=0,dy+dx+x³ydy+y³xdx=0,d(x+y)+x³y³(dy/y²+dx/x²)=0,d(x+y)-x³y³(-dy/y²-dx/x²)=0,d(x+y)=x³y³d(1/y+1/x),d(x+y)=x³y³d[(x+y)/xy];设x+y=u,xy=v,方程化为du=v³d(u/v),再设u=zv,方程化为d(zv)=v³dz,zdv+vdz=v³dz,zdv=(v³-v)dz,dv/(v³-v)=dz/z,vdv/(v²-1)-dv/v=dz/z,0.5ln|v²-1|-ln|v|=ln|z|+0.5ln|a|(a为任意非零常数),ln|v²-1|=ln|av²z²|,v²-1=av²z²,有v²-1=au²,微分方程的解为x²y²-1=a(x+y)²请参考
系科仪器
2024-08-02 广告
2024-08-02 广告
科仪器致力于为微纳薄膜领域提供精益级测量及控制仪器,包括各种光谱椭偏、激光椭偏、反射式光谱等,从性能参数、使用体验、价格、产品可靠性及工艺拓展性等多个维度综合考量,助客户提高研发和生产效率,以及带给客户更好的使用体验。...
点击进入详情页
本回答由系科仪器提供
展开全部
∫(0->2π) (1-cosx)^3 dx
其中(1-cosx)^3
=(1-cosx)(1-cosx)^2
=(1-cosx)(1-2cosx+(cosx)^2)
=1-2cosx+(cosx)^2-cosx+2(cosx)^2-(cosx)^3
=1-3cosx+3(cosx)^2-(cosx)^3
一个个来
1、
∫1dx=x
2、
∫3cosx dx=3sinx
3、
∫3(cosx)^2=3∫[(cos2x)+1]/2 dx
=(3/4)∫(cos2x+1) d2x
=(3/4)(sin2x+2x)
4、
∫(cosx)^3 dx=∫(cosx)^2 dsinx
=∫[1-(sinx)^2]dsinx
=sinx-[(sinx)^3]/3
所以
原式={x-3sinx+(3/4)(sin2x+2x)-sinx+[(sinx)^3]/3} (0->2π)
=2π-3sin2π+(3/4)(sin4π+4π)-sin2π+[(sin2π)^3]/3
=2π+3π
=5π
其中(1-cosx)^3
=(1-cosx)(1-cosx)^2
=(1-cosx)(1-2cosx+(cosx)^2)
=1-2cosx+(cosx)^2-cosx+2(cosx)^2-(cosx)^3
=1-3cosx+3(cosx)^2-(cosx)^3
一个个来
1、
∫1dx=x
2、
∫3cosx dx=3sinx
3、
∫3(cosx)^2=3∫[(cos2x)+1]/2 dx
=(3/4)∫(cos2x+1) d2x
=(3/4)(sin2x+2x)
4、
∫(cosx)^3 dx=∫(cosx)^2 dsinx
=∫[1-(sinx)^2]dsinx
=sinx-[(sinx)^3]/3
所以
原式={x-3sinx+(3/4)(sin2x+2x)-sinx+[(sinx)^3]/3} (0->2π)
=2π-3sin2π+(3/4)(sin4π+4π)-sin2π+[(sin2π)^3]/3
=2π+3π
=5π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询