最小二乘法公式推导过程

 我来答
户如乐9318
2022-07-28 · TA获得超过6639个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:137万
展开全部
假设现在有n对坐标系中的点

现在要做k阶多项式拟合,多项式函数如下

将已知的观测点数据代入上述公式得到如下n组等式:

......

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小,如下所示:

代入公式可以得到

可以通过上述公式对

求偏导后,令其为0来求解所有a的值,得到下面的式子

......

将上述方程整理归纳得

......

将上述方程用矩阵表述

将上述方程分解,令

那么上面的矩阵计算可以简化为

,所以得到

网上的一些证明到这里基本就结束了,但我觉得根据逆矩阵的特性还可以优化的,在矩阵中AB的逆等于B的逆乘A的逆,如下

化简可以得到a为X的逆乘Y

计算出X的逆矩阵乘Y得到的就是多项式的系数,就能得到一个多项式了,曲线拟合就算完成了。

但是有没有发现,X的逆矩阵计算量很大,还要明白如何求解逆矩阵的,用程序去实现也有一定难度。

后面会介绍一种法则,求解多项式的系数,套公式即可。以及用C语言实现最小二乘法的2次曲线拟合算法。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式