计算极限lim [∫(t-sint)]dt / [(e^x^4)-1]=? 请给详细步骤越详细越好!

 我来答
世纪网络17
2022-09-05 · TA获得超过5933个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:140万
展开全部
∫(t-sint)dt =(1/2t^2+cost)|=1/2x^2+cosx-1
lim(1/2x^2+cosx-1)/ [(e^x^4)-1]
=lim(x-sinx)/ (4x^3*e^x^4)
=lim(1-cosx)/ (12x^2*e^x^4+16x^6*e^x^4)
实在搞不懂 e^x^4 的结构(e^x)^4,还是e^(x^4)
刚才由后者算的,累人呀,下面用前者试试
lim(1/2x^2+cosx-1)/ [(e^x)^4)-1]
=lim(x-sinx)/ (4(e^x)^4=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式