证明 1+xln[x+(1+x^2)^1/2]>=(1+x^2)^1/2

 我来答
户如乐9318
2022-09-11 · TA获得超过6661个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:140万
展开全部
证明:要证 x∈R,1+xln[x+(1+x^2)^1/2]≥(1+x^2)^1/2成立
设 x=sht ,t∈R (双曲函数shx)
则ln[x+(1+x^2)^1/2]=t ,(1+x^2)^1/2=cht
只需证 t∈R 1+t(sht)≥cht 即 t(sht)-cht+1 ≥0成立
构造函数 f(t)=t(sht)-cht+1 t∈R
f'(t)=(sht)+t(cht)-sht=t(cht)
得f(t)在(-∞,0)上单减,在(0,+∞)上单增 且f'(0)=0
有f(t)=t(sht)-cht+1≥f(0)=0
得到 t∈R t(sht)-cht+1 ≥0 真
所以 x∈R,1+xln[x+(1+x^2)^1/2]≥(1+x^2)^1/2成立.
上面证明中用到了双曲函数:
shx=(e^x-e^(-x))/2 chx=(e^x+e^(-x))/2
它们有下列特性:(chx)^2-(shx)^2=1 shx是奇函数且在R是单增 chx是偶函数且chx≥1
(shx)'=chx (chx)'=shx
希望对你有点帮助!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式