解分式方程的一般过程
解分式方程的一般过程如下:
去分母,方程两边同乘各分母的最简公分母。去括号,系数分别乘以括号里的数。移项,含有未知数的式子移动到方程左边,常数移动到方程右边。合并同类项。系数化为 1,方程的基本性质就是同时乘以或除以一个数,方程不变。
第一步,去分母,方程两边同乘各分母的最简公分母,解3-(×+1)=5-(×+3)。同乘(x+1) (x+3)就可以去掉分母了。
第二步,去括号,系数分别乘以括号里的数。
第三步,移项,含有未知数的式子移动到方程左边,常数移动到方程右边。
第四步,合并同类项
第五步,系数化为1,方程的基本性质就是同时乘以或除以一个数,方程不变,和天平一样的。这里除以-2。
第六步,检验,把方程的解代入分式方程,检验是否正确。
分式方程的解题思想:基本思想是把分式方程化为整式方程,解出整式方程后,再把整式方程的解代入原方程检验,确定是否是原分式方程的解。
分式方程转化为整式方程的基本方法:一、将方程两边都乘各分母的最简公分母;二、 换元法。
由于把分式方程转化为整式方程后,有时会产生不适合原方程的增根,所以解分式方程一定要检验,把不符合方程的根舍去。
对于含有字母系数的方程,要根据字母系数的限制条件,对字母的取值进行分类讨论, 然后表示方程的解。
解分式方程的一般过程如下:
去分母,方程两边同乘各分母的最简公分母。去括号,系数分别乘以括号里的数。移项,含有未知数的式子移动到方程左边,常数移动到方程右边。合并同类项。系数化为 1,方程的基本性质就是同时乘以或除以一个数,方程不变。
第一步,去分母,方程两边同乘各分母的最简公分母,解3-(×+1)=5-(×+3)。同乘(x+1) (x+3)就可以去掉分母了。
第二步,去括号,系数分别乘以括号里的数。
第三步,移项,含有未知数的式子移动到方程左边,常数移动到方程右边。
第四步,合并同类项
第五步,系数化为1,方程的基本性质就是同时乘以或除以一个数,方程不变,和天平一样的。这里除以-2。
第六步,检验,把方程的解代入分式方程,检验是否正确。
分式方程的解题思想:基本思想是把分式方程化为整式方程,解出整式方程后,再把整式方程的解代入原方程检验,确定是否是原分式方程的解。
分式方程转化为整式方程的基本方法:一、将方程两边都乘各分母的最简公分母;二、 换元法。
由于把分式方程转化为整式方程后,有时会产生不适合原方程的增根,所以解分式方程一定要检验,把不符合方程的根舍去。
对于含有字母系数的方程,要根据字母系数的限制条件,对字母的取值进行分类讨论, 然后表示方程的解。