基因突变的特点
1、基因突变的随机性
部位上的随机,基因突变既可以发生在体细胞中,也可以发生在生殖细胞中,且前者一般不会传递给后代,而后者可通过生殖细胞传递给子代。此外基因突变既可以发生在同一DNA分子的不同部分,也可以发生在细胞内不同的DNA分子上。
时间上的随机,基因突变可以发生在生物个体发育的任何阶段,甚至在趋于衰老的个体中也容易发生,如老年人易得皮肤癌等。
2、基因突变的不定向性
基因突变的不定向性指基因突变可以多方向发生,即基因内部多个突变部位分别改变后会产生多种等位基因形式。
其中等位基因一般指位于一对同源染色体的相同位置上控制着相对性状的一对基因。例如,A基因不同部位发生改变产生突变基因a1、a2、a3等对A均表现为隐性的基因。新基因可能均是无功能的,也可能各具不同功能。
3、基因突变的普遍性和稀有性
基因突变在生物界具有普遍性,无论是低等生物还是高等生物,都有可能发生基因突变。包括自然突变和人工诱变突变。但是在自然状态下,突变也是较少的。
野生型基因以极低的突变率发生突变。据测算,一般高等生物基因的突变率大约平均为:10-8~10-5/生殖细胞/位点/代;人类基因的突变率也大约仅仅为:10-6~10-4/生殖细胞/位点/代。
基因突变的有害性和有利性:
大多数基因的突变,对生物的生长与发育往往是有害的。基因突变可能会导致基因原有功能丧失;基因间及相关代谢过程的协调关系被破坏;性状变异、个体发育异常,生存竞争与生殖能力下降,甚至死亡――致死突变。
突变的有害和有利性是相对的,在某些情况下,基因突变的有害与与有利性可以转化。如抗逆性突变是有利的,又如作物矮杆突变型在多风与高肥环境下是有利的。
中性突变指突变型的性状变异对生物个体生活力与繁殖力没有明显的影响,在自然条件下不具有选择差异的基因突变。
如将突变技术应用于DNA缺失改造、蛋白质工程和酶等多个研究领域。突变技术的发展不仅可以加深人们对蛋白等物质的了解,也能为进一步的研究提供技术支持。
此外,突变技术可以对某一特性相关位点同时进行突变,将提高获取突变子的效率,节约时间。突变技术在蛋白质工程、农业科学、医学、基因表达及调控等多个领域应用。