当x趋于0时,sin1/x为什么不存在极限
1个回答
展开全部
当x趋向于0时,1/x趋向于无穷大(正无穷大和负无穷大),(无穷小量的倒数是无穷大量),观察1/x的正弦图像可知,它是一条上下波动的曲线,最大值为1,最小值为-1。
也就是说当1/x趋向于无穷大时,1/x的正弦值就无限趋近于正负1,它只是有界但并不单调。而根据极限的定义可知:极限值有且只有一个;单调有界数列极限必然存在。
所以它的极限并不存在。
扩展资料:
极限的思想方法贯穿于数学分析课程的始终。可以说数学分析中的几乎所有的概念都离不开极限。
在几乎所有的数学分析著作中,都是先介绍函数理论和极限的思想方法,然后利用极限的思想方法给出连续函数、导数、定积分、级数的敛散性、多元函数的偏导数,广义积分的敛散性、重积分和曲线积分与曲面积分的概念。如:
(1)函数在点连续的定义,是当自变量的增量趋于零时,函数值的增量趋于零的极限。
(2)函数在点导数的定义,是函数值的增量与自变量的增量之比,当时的极限。
(3)函数在点上的定积分的定义,是当分割的细度趋于零时,积分和式的极限。
(4)数项级数的敛散性是用部分和数列的极限来定义的。
(5)广义积分是定积分其中为,任意大于的实数当时的极限,等等。
参考资料来源:
参考资料来源:
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询