双曲线的渐近线方程是什么?
在X轴上的是(c,0)和(-c,0)
在Y轴的是(0,c)和(0,-c)
c=根号(a^2+b^2)
我们把平面内与两个定点F1,F2的距离的差的绝对值等于一个常数(常数为2a,小于|F1F2|)的轨迹称为双曲线;平面内到两定点的距离差的绝对值为定长的点的轨迹叫做双曲线)
即:│|PF1|-|PF2│|=2a
定义1:
平面内,到两个定点的距离之差的绝对值为常数(小于这两个定点间的距离)的点的轨迹称为双曲线。定点叫双曲线的焦点。
定义2:平面内,到给定一点及一直线的距离之比为常数e((e>1),即为双曲线的离心率)的点的轨迹称为双曲线。定点叫双曲线的焦点,定直线叫双曲线的准线。双曲线准线的方程为(焦点在x轴上)或(焦点在y轴上)。
定义3:一平面截一圆锥面,当截面与圆锥面的母线不平行也不通过圆锥面顶点,且与圆锥面的两个圆锥都相交时,交线称为双曲线。
定义4:在平面直角坐标系中,二元二次方程F(x,y)=ax2+bxy+cy2+dx+ey+f=0满足以下条件时,其图像为双曲线。
1、a、b、c不都是零。
2、Δ=b2-4ac>0。
注:第2条可以推出第1条。
在高中的解析几何中,学到的是双曲线的中心在原点,图像关于x,y轴对称的情形。
上述的四个定义是等价的,并且根据建好的前后位置判断图像关于x,y轴对称。
标准方程为:
扩展资料:
取值范围
│x│≥a(焦点在x轴上)或者│y│≥a(焦点在y轴上)。
对称性
关于坐标轴和原点对称,其中关于原点成中心对称。
顶点
A(-a,0),A'(a,0)。同时AA'叫做双曲线的实轴且│AA'│=2a。
B(0,-b),B'(0,b)。同时BB'叫做双曲线的虚轴且│BB'│=2b。
F1(-c,0)或(0,-c),F2(c,0)或(0,c)。F1为双曲线的左焦点,F2为双曲线的右焦点且│F1F2│=2c
对实轴、虚轴、焦点有:a2+b2=c2
渐近线
圆锥曲线ρ=ε/1-ecosθ当e>1时,表示双曲线。其中p为焦点到准线距离,θ为弦与x轴夹角。
令1-ecosθ=0可以求出θ,这个就是渐近线的倾角,即θ=arccos(1/e)
令θ=0,得出ρ=ε/(1-e),x=ρcosθ=ε/(1-e)
令θ=π,得出ρ=ε/(1+e),x=ρcosθ=-ε/(1+e)
这两个x是双曲线定点的横坐标。
求出它们的中点的横坐标(双曲线中心横坐标)
x=[(ε/1-e)+(-ε/1+e)]/2
(注意化简一下)
直线ρcosθ=[(ε/1-e)+(-ε/1+e)]/2
是双曲线一条对称轴,注意是不与曲线相交的对称轴。
将这条直线顺时针旋转π/2-arccos(1/e)角度后就得到渐近线方程,设旋转后的角度是θ’
则θ’=θ-[π/2-arccos(1/e)]
则θ=θ’+[π/2-arccos(1/e)]
代入上式:
ρcos{θ’+[π/2-arccos(1/e)]}=[(ε/1-e)+(-ε/1+e)]/2
即:ρsin[arccos(1/e)-θ’]=[(ε/1-e)+(-ε/1+e)]/2
然后可以用θ取代式中的θ’了
得到方程:ρsin[arccos(1/e)-θ]=[(ε/1-e)+(-ε/1+e)]/2
现证明双曲线x2/a2-y2/b2=1上的点在渐近线中
设M(x,y)是双曲线在第一象限的点,则
y=(b/a)√(x2-a2)(x>a)
因为x2-a2<x2,所以y=(b/a)√(x2-a2)<b/a√x2=bx/a
即y<bx/a
所以,双曲线在第一象限内的点都在直线y=bx/a下方。
根据对称性第二、三、四象限亦如此。
参考资料:百度百科——双曲线