过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程l:A1X+B1Y+C1+λ(A2X+B2Y+C2)=0
1个回答
展开全部
设:两直线的交点是M(m,n)
则点M在直线L1上,得:
A1m+B1n+C1=0
点M在直线L2上,得:
A2m+B2n+C2=0
将点M的坐标代入直线(A1x+B1y+C1)+λ(A2x+B2y+C2)=0,得:
左边=(A1m+B1n+C1)+λ(A2m+B2n+C2)=0=右边
即点M在直线(A1x+B1y+C1)+λ(A2x++λC2)=0上.
也就是说,此直线过直线L1与直线L2的交点M
则点M在直线L1上,得:
A1m+B1n+C1=0
点M在直线L2上,得:
A2m+B2n+C2=0
将点M的坐标代入直线(A1x+B1y+C1)+λ(A2x+B2y+C2)=0,得:
左边=(A1m+B1n+C1)+λ(A2m+B2n+C2)=0=右边
即点M在直线(A1x+B1y+C1)+λ(A2x++λC2)=0上.
也就是说,此直线过直线L1与直线L2的交点M
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询