设f(x)可导,且f'(0=1,又y=f(x^2+sin^2x)+f(arctanx),求dy/dx /x=0

 我来答
户如乐9318
2022-08-04 · TA获得超过6714个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:147万
展开全部
记g(x)=f(x^2+sin^2x)+f(arctanx)=y
g'(x)=f'(x^2+sin^2x)(2x+sin2x)+f'(arctanx)/(x2+1)
dy/dx|x=0,即g'(0)
代入得:g'(0)=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式