(sinx)^y=(cosy)^x 求dy
1个回答
展开全部
(sinx)^y=(cosy)^x
两边取对数
ln(sinx)^y=ln(cosy)^x
yln(sinx)=xln(cosy)
两边求导:
y'ln(sinx)+y/sinx*cosx=ln(cosy)+x/cosy*(-siny)*y'
y'ln(sinx)+xy'/(sinycosy)=ln(cosy)-y/(sinxcosx)
y'[ln(sinx)+x/(sinycosy)]=ln(cosy)-y/(sinxcosx)
y'=[ln(cosy)-y/(sinxcosx)]/[ln(sinx)+x/(sinycosy)]
dy=[ln(cosy)-y/(sinxcosx)]/[ln(sinx)+x/(sinycosy)] dx
两边取对数
ln(sinx)^y=ln(cosy)^x
yln(sinx)=xln(cosy)
两边求导:
y'ln(sinx)+y/sinx*cosx=ln(cosy)+x/cosy*(-siny)*y'
y'ln(sinx)+xy'/(sinycosy)=ln(cosy)-y/(sinxcosx)
y'[ln(sinx)+x/(sinycosy)]=ln(cosy)-y/(sinxcosx)
y'=[ln(cosy)-y/(sinxcosx)]/[ln(sinx)+x/(sinycosy)]
dy=[ln(cosy)-y/(sinxcosx)]/[ln(sinx)+x/(sinycosy)] dx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询