√(1/2)*x^2的不定积分怎么计算?
1个回答
展开全部
√(1-x^2)的不定积分为 (1/2)[arcsinx + x√(1 - x^2)] + C。
计算方法如下:
∫ √(1 - x^2) dx
= ∫ √(1 - sin^2θ)(cosθ dθ)
= ∫ cosθ^2
∫ (1 + cos2θ)/2 dθ
= θ/2 + (sin2θ)/4 + C
= (arcsinx)/2 + (sinθcosθ)/2 + C
= (arcsinx)/2 + (x√(1
x^2))/2 + C
= (1/2)[arcsinx + x√(1 - x^2)] + C
不可积函数
虽然很多函数都可通过如上的各种手段计算其不定积分,但这并不意味着所有的函数的原函数都可以表示成初等函数的有限次复合,原函数不可以表示成初等函数的有限次复合的函数称为不可积函数。利用微分代数中的微分Galois理论可以证明,如xx ,sinx/x这样的函数是不可积的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询