证明对於所有自然数n,n(n+1)(n+2)(n+3)能被12整除

 我来答
世纪网络17
2022-08-26 · TA获得超过5958个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:144万
展开全部
一个数被3除的余数有3种可能:0、1、2
(1)若n被3除余0,则n(n+1)(n+2)(n+3)能被3整除;
(2)若n被3除余1,则可设n=3r+1(r为自然数),则n+2=3(r+1),推出 n(n+1)(n+2)(n+3)能被3整除;
(3)若n被3除余2,则可设n=3r+2(r为自然数),则n+1=3(r+1),推出 n(n+1)(n+2)(n+3)能被3整除;
总之,n(n+1)(n+2)(n+3)能被3整除.
显然4个连续自然数中必有2个偶数,它们相乘能被4整除,于是n(n+1)(n+2)(n+3)也能被4整除.
由于3和4互质,所以n(n+1)(n+2)(n+3)能被12整除.
这道题不需要用数学归纳法~
如果硬要用数学归纳法么
(1)当n=1时, n(n+1)(n+2)(n+3)=12,能被12整除;
(2)假设当n=k时,n(n+1)(n+2)(n+3)=k(k+1)(k+2)(k+3),能被12整除,
那么当n=k+1时,n(n+1)(n+2)(n+3)=(k+1)(k+2)(k+3)(k+4)=k(k+1)(k+2)(k+3)+4(k+1)(k+2)(k+3),
由前一种证法可以看出,连续3个自然数中必有一个为3的倍数,故4(k+1)(k+2)(k+3)能被12整除,又由假设k(k+1)(k+2)(k+3)能被12整除,得出k(k+1)(k+2)(k+3)+4(k+1)(k+2)(k+3)能被12整除.
所以对于任意的n, n(n+1)(n+2)(n+3)能被12整除.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式