如何判断复变函数在某点的解析性?

 我来答
百度网友a5592cc
高粉答主

2023-01-23 · 繁杂信息太多,你要学会辨别
知道答主
回答量:21
采纳率:100%
帮助的人:1.1万
展开全部

1、如果给出的函数形式是f(z)=u(x,y)+i*v(x,y),且u和v的形式比较和谐,那么直接根据柯西-黎曼方程来进行判断。

2、如果给出的函数形式是w=f(z)(表达式中只有z,没有x、y和其他自变量),而且f(z)的形式比较和谐,那么在定义域内都可以认为f(z)是解析的。

3、如果给出的函数形式是w=f(z,z')(其中z'是z的共轭),而没有其他变量,而且函数的形式比较和谐,那么这个函数在复平面上处处不解析。

如果要求函数f(z)在z0处是否解析,就要根据u和v的表达式,结合柯西-黎曼方程判断f(z)在z0附近(不包括z0)是否可导。如果可导,进一步通过定义法判断f(z)在z0点是否可导。若两次判断都满足可导条件,则f(z)在z0处解析。

扩展资料:

设ƒ(z)是平面开集D内的复变函数。对于z∈D,如果极限存在且有限,则称ƒ(z)在z处是可导的,此极限值称为ƒ(z)在z处的导数,记为ƒ'(z)。这是实变函数导数概念的推广,但复变函数导数的存在却蕴含着丰富的内容。这是因为z+h是z的二维邻域内的任意一点,极限的存在条件比起一维的实数情形要强得多。

一个复变函数如在z的某一邻域内处处有导数,则该函数必在z处有高阶导数,而且可以展成一个收敛的幂级数(见解析函数)。所以复变函数导数的存在,对函数本身的结构有重大影响,而这些结果的研究,构成了一门学科──复变函数论。

参考资料来源:百度百科—复变函数

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
光点科技
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件... 点击进入详情页
本回答由光点科技提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式