极限limx→0(sec^2x-sin^2x)^1/ln(1+x^4)?
2个回答
展开全部
x->0
sinx= x-(1/6)x^3 +o(x^3)
(sinx)^2= [x-(1/6)x^3 +o(x^3)]^2 = x- (1/3)x^4 +o(x^4)
sin2x= 2x-(3/2)x^3 +o(x^3)
(sin2x)^2= [2x-(3/2)x^3 +o(x^3)]^2 = 4x^2- 6x^4 +o(x^4)
(1/4)(sin2x)^2= x^2- (3/2)x^4 +o(x^4)
(sinx)^2-(1/4)(sin2x)^2= x^4 +o(x^4)
//
(secx)^2 - (sinx)^2
=[1 - (sinx)^2.(cosx)^2]/(cosx)^2
=[1 - (1/4)(sin2x)^2]/(cosx)^2
= 1+ [(sinx)^2 - (1/4)(sin2x)^2]/(cosx)^2
~1 +[(sinx)^2 - (1/4)(sin2x)^2]
~ 1+x^4
//
lim(x->0) [ (secx)^2-(sinx)^2]^[1/ln(1+x^4)]
=lim(x->0) [ (secx)^2-(sinx)^2]^(1/x^4)
=lim(x->0) [ 1+x^4]^(1/x^4)
=e
sinx= x-(1/6)x^3 +o(x^3)
(sinx)^2= [x-(1/6)x^3 +o(x^3)]^2 = x- (1/3)x^4 +o(x^4)
sin2x= 2x-(3/2)x^3 +o(x^3)
(sin2x)^2= [2x-(3/2)x^3 +o(x^3)]^2 = 4x^2- 6x^4 +o(x^4)
(1/4)(sin2x)^2= x^2- (3/2)x^4 +o(x^4)
(sinx)^2-(1/4)(sin2x)^2= x^4 +o(x^4)
//
(secx)^2 - (sinx)^2
=[1 - (sinx)^2.(cosx)^2]/(cosx)^2
=[1 - (1/4)(sin2x)^2]/(cosx)^2
= 1+ [(sinx)^2 - (1/4)(sin2x)^2]/(cosx)^2
~1 +[(sinx)^2 - (1/4)(sin2x)^2]
~ 1+x^4
//
lim(x->0) [ (secx)^2-(sinx)^2]^[1/ln(1+x^4)]
=lim(x->0) [ (secx)^2-(sinx)^2]^(1/x^4)
=lim(x->0) [ 1+x^4]^(1/x^4)
=e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询