arctanx-tanx等价无穷小替换公式是什么
1个回答
展开全部
等价无穷小
替换公式如下:
1、sinx~x
2、tanx~x
3、arcsinx~x
4、arctanx~x
5、1-cosx~(1/2)*(x^2)~secx-1
6、(a^x)-1~x*lna ((a^x-1)/x~lna)
7、(e^x)-1~x
8、ln(1+x)~x
9、(1+Bx)^a-1~aBx
10、[(1+x)^1/n]-1~(1/n)*x
11、loga(1+x)~x/lna
12、(1+x)^a-1~ax(a≠0)
求极限时使用等价无穷小的条件:
1、被代换的量,在去极限的时候极限值为0。
2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
无穷小就是以数零为极限的变量。然而常量是变量的特殊一类,就像直线属于曲线的一种。确切地说,当自变量
x无限接近某个值x0(x0可以是0、∞、或是别的什么数)时,函数值f(x)与零无限接近,即f(x)=0,则称f(x)为当x→x0时的无穷小量
。
替换公式如下:
1、sinx~x
2、tanx~x
3、arcsinx~x
4、arctanx~x
5、1-cosx~(1/2)*(x^2)~secx-1
6、(a^x)-1~x*lna ((a^x-1)/x~lna)
7、(e^x)-1~x
8、ln(1+x)~x
9、(1+Bx)^a-1~aBx
10、[(1+x)^1/n]-1~(1/n)*x
11、loga(1+x)~x/lna
12、(1+x)^a-1~ax(a≠0)
求极限时使用等价无穷小的条件:
1、被代换的量,在去极限的时候极限值为0。
2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
无穷小就是以数零为极限的变量。然而常量是变量的特殊一类,就像直线属于曲线的一种。确切地说,当自变量
x无限接近某个值x0(x0可以是0、∞、或是别的什么数)时,函数值f(x)与零无限接近,即f(x)=0,则称f(x)为当x→x0时的无穷小量
。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询