如何求拉格朗日中值定理?

 我来答
小叶教育问答
2023-04-15 · TA获得超过3956个赞
知道大有可为答主
回答量:7.5万
采纳率:99%
帮助的人:1065万
展开全部

利用拉格朗日中定值求极限具体如下:

拉格朗日中值定理求极限的公式为:lim[ln(1+tanx)-ln(1+sinx)]/x³ (x→0)。

根据拉格朗日中值定理,每一个在0附近邻域的x,tanx~sinx是一个考虑的区间,设f(x)=ln(1+x),那么有:ln(1+tanx)-ln(1+sinx)。

=f'(ξ)·(tanx-sinx),f'(ξ)=1/(1+ξ),且ξ在tanx与sinx之间。

可以把ξ看成是x的一个函数即ξ(x),那有极限=lim[(tanx-sinx)/(1+ξ(x))]/x³。

x→0时,sinx和tanx都→0,所以ξ(x)→0。故=lim(tanx-sinx)/x³,根据洛必达法则就可得出极限为1/2。

拉格朗日中值定理的运动学意义以及案例:

一、拉格朗日中值定理的运动学意义:

拉格朗日中值定理在柯西的微积分理论系统中占有重要的地位。可利用拉格朗日中值定理对洛必达法则进行严格的证明,并研究泰勒公式的余项。从柯西起,微分中值定理就成为研究函数的重要工具和微分学的重要组成部分。

二、求解案例:

对于无约束条件的函数求极值,主要利用导数求解法。

比如求解函数f(x,y)=x3-4×2+2xy-y2+1的极值。步骤如下:

(1)求出f(x,y)的一阶偏导函数f’x(x,y),f’y(x,y)。

f’x(x,y) = 3×2-8x+2y

f’y(x,y) = 2x-2y

(2)令f’x(x,y)=0,f’y(x,y)=0,解方程组。

3×2-8x+2y = 0

2x-2y = 0

得到解为(0,0),(2,2)。这两个解是f(x,y)的极值点。

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式