欧拉公式?

 我来答
三亿御姐的梦丶
高能答主

2023-07-29 · 把复杂的事情简单说给你听
知道小有建树答主
回答量:321
采纳率:100%
帮助的人:8万
展开全部

欧拉公式eiθ=cosθ+isinθ高二学的。

在数学历史上有很多公式都是欧拉(LeonhardEuler公元1707-1783年)发现的,它们都叫做欧拉公式,它们分散在各个数学分支之中。

(1)分式里的欧拉公式:

a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)。

当r=0,1时式子的值为0。

当r=2时值为1。

当r=3时值为a+b+c。

(2)复变函数论里的欧拉公式:

e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。

将公式里的x换成-x,得到:e^-ix=cosx-isinx,然后采用两式相加减的方法得到:sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2,这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作∏就得到:e^i∏+1=0。

这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率∏,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。

拓扑学里的欧拉公式:

V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。

如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。

X(P)叫做P的欧拉示性数,是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围。

在多面体中的运用:

简单多面体的顶点数V、面数F及棱数E间有关系V+F-E=2。这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式