3个回答
展开全部
1/(2^2-1)+1/(3^2-1)+1/(4^2-1)+......+1/(n^2-1)
=1/(2-1)(2+1)+1/(3-1)(3+1)+1/(4-1)(4+1)+......+1/(n-1)(n+1)
=1/(1*3)+1/(2*4)+1/(3*5)+……+1/(n-1)(n+1)
=1/2*(1-1/3+1/2-1/4+1/3-1/5+……+1/(n-1)-1/(n+1))
=1/2(1+1/2-1/n-1/(n+1))
=(3n+2)(n-1)/[4n(n+1)]
=1/(2-1)(2+1)+1/(3-1)(3+1)+1/(4-1)(4+1)+......+1/(n-1)(n+1)
=1/(1*3)+1/(2*4)+1/(3*5)+……+1/(n-1)(n+1)
=1/2*(1-1/3+1/2-1/4+1/3-1/5+……+1/(n-1)-1/(n+1))
=1/2(1+1/2-1/n-1/(n+1))
=(3n+2)(n-1)/[4n(n+1)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/(2^2-1)+1/(3^2-1)+1/(4^2-1)+......+1/(n^2-1)
=1/[(2-1)(2+1)]+1/[(3-1)(3+1)]+....+1/[(n-1)(n+1)]
=1/(1*3)+1/(2*4)+1/(3*5)+1/(4*6)+.....+1/[(n-1)(n+1)]
=1/2(1-1/3)+1/2(1/2-1/4)+1/2(1/3-1/5)+1/2(1/4-1/6)+....+1/2[1/(n-1)-1/(n+1)]
=1/2[1-1/3+1/2+1/4+1/3-1/5+1/4-1/6+...+1/(n-1)-(n+1)]
=1/2[1+1/2-1/n-1/(n+1)]
=(3n+2)(n-1)/[4n(n+1)]
=1/[(2-1)(2+1)]+1/[(3-1)(3+1)]+....+1/[(n-1)(n+1)]
=1/(1*3)+1/(2*4)+1/(3*5)+1/(4*6)+.....+1/[(n-1)(n+1)]
=1/2(1-1/3)+1/2(1/2-1/4)+1/2(1/3-1/5)+1/2(1/4-1/6)+....+1/2[1/(n-1)-1/(n+1)]
=1/2[1-1/3+1/2+1/4+1/3-1/5+1/4-1/6+...+1/(n-1)-(n+1)]
=1/2[1+1/2-1/n-1/(n+1)]
=(3n+2)(n-1)/[4n(n+1)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/(2-1)(2+1)+1/(3-1)(3+1)+1/(4-1)(4+1)+...+1/(n-1)(n+1)
=1/2[1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+...+1/(n-1)-1/(n+1)]
=1/2[1-1/(n+1)]
=n/[2(n+1)]
=1/2[1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+...+1/(n-1)-1/(n+1)]
=1/2[1-1/(n+1)]
=n/[2(n+1)]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询