
2个回答
展开全部
设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点.把y固定在y0而让x在x0有增量△x,相应地函数z=f(x,y)有增量(称为对x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。 如果△z与△x之比当△x→0时的极限存在,那么此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数。
你这里一元函数y=f(x)中求导称导数,和偏导数的结果是一样的。多元函数中,才可以理解为真正的求偏导数,比如你多元函数你必须说对某一个未知数求偏导数。
你这里一元函数y=f(x)中求导称导数,和偏导数的结果是一样的。多元函数中,才可以理解为真正的求偏导数,比如你多元函数你必须说对某一个未知数求偏导数。

2024-11-19 广告
第四轴分度盘是数控机床的重要组成部分,它能大幅提高加工效率和精度。作为苏州谭祖自动化科技有限公司的工作人员,我们深知第四轴分度盘的重要性,因此在产品的生产和设计上投入了大量精力。我们的第四轴分度盘具有高精度、高性能、承载能力强等特点,能满足...
点击进入详情页
本回答由苏州谭祖自动化科技有限公司_提供
展开全部
导数本身就是一种极限。
导数和偏导没有本质区别,都是当自变量的变化量趋于0时,函数值的变化量与自变量变化量比值的极限(有过极限存在的话)。
一元函数,一个y对应一个x,导数只有一个。
二元函数,一个z对应一个x和一个y,那就有两个导数了,一个是z对x的导数,一个是z对y的导数,称之为偏导。
求偏导时要注意,对一个变量求导,则视另一个变量为常数,只对改变量求导,从而将偏导的求解转化成了一元函数的求导了。
导数和偏导没有本质区别,都是当自变量的变化量趋于0时,函数值的变化量与自变量变化量比值的极限(有过极限存在的话)。
一元函数,一个y对应一个x,导数只有一个。
二元函数,一个z对应一个x和一个y,那就有两个导数了,一个是z对x的导数,一个是z对y的导数,称之为偏导。
求偏导时要注意,对一个变量求导,则视另一个变量为常数,只对改变量求导,从而将偏导的求解转化成了一元函数的求导了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询