极值存在的必要条件
若函数f(x)在x₀的一个邻域D有定义,且对D中除x₀的所有点,都有f(x)<f(x₀),则称f(x₀)是函数f(x)的一个极大值。
同理,若对D的所有点,都有f(x)>f(x₀),则称f(x₀)是函数f(x)的一个极小值。
极值的概念来自数学应用中的最大最小值问题。根据极值定律,定义在一个有界闭区域上的每一个连续函数都必定达到它的最大值和最小值,问题在于要确定它在哪些点处达到最大值或最小值。如果极值点不是边界点,就一定是内点。因此,这里的首要任务是求得一个内点成为一个极值点的必要条件。
扩展资料:
其他相关数学概念:间断点类型:
1、可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义。如函数y=(x^2-1)/(x-1)在点x=1处。
2、跳跃间断点:函数在该点左极限、右极限存在,但不相等。如函数y=|x|/x在点x=0处。
3、无穷间断点:函数在该点可以无定义,且左极限、右极限至少有一个不存在,且函数在该点极限为∞。如函数y=tanx在点x=π/2处。
4、振荡间断点:函数在该点可以无定义,当自变量趋于该点时,函数值在两个常数间变动无限多次。如函数y=sin(1/x)在x=0处。(图四)
可去间断点和跳跃间断点称为第一类间断点,也叫有限型间断点。其它间断点称为第二类间断点。
参考资料来源:百度百科-间断点
参考资料来源:百度百科-极值
2018-06-11 广告
即对于f(x)要有极值
必须有f'(x)=0有解
对于可导函数来说,是必须在该点的导数是0
但对于某些点不可导的情况就难说了
例如y=|x|在x=0处取的极小值,但在x=0处的导数不存在