
已知向量a=(cosa,sina) b=(cosb,sinb)且a b满足│ka+b│=根号3│a-kb│(k>0)
1求向量a与向量b的数量积用k表示的解析式f(k)2向量a能否和向量b垂直?能否平行?若不能则说明理由若能则求k值3求向量a与b夹角的最大值...
1 求向量a与向量b的数量积用k表示的解析式f(k)
2 向量a能否和向量b垂直 ?能否平行?若不能则说明理由 若能 则求k值
3 求向量a与b夹角的最大值 展开
2 向量a能否和向量b垂直 ?能否平行?若不能则说明理由 若能 则求k值
3 求向量a与b夹角的最大值 展开
3个回答
展开全部
由|ka+b|=根号3|a-kb|平方得到:k^2a^2+2kab+b^2=3(a^2-2kab+k^2b^2),
又|a|=1,|b|=1,
代入上式得到:k^2+2ka.b+1=3(1-2kab+k^2),即8ka.b=2+2k^2,
即a.b=(2+2k^2)/8k=(k^2+1)/4k,
(2)由于k>0,故a·b不=0,所以向量a和向量b不能垂直。
如果a,b平行,则a·b=(+/-)|a||b|
即(k^2+1)/4k=(+/-)1
k^2+1=(+/-)4k
k^2(-/+)4k+1=0
[k(-/+)2]^2=3
k(-/+)2=(+/-)根号3
又k>0,即k=2+根号3或2-根号3
(3)cos<a,b>=a.b/(|a||b|)=(2+2k^2)/8k=1/(4k)+k/4>=2根号(1/4k*k/4)=2*1/4=1/2
所以,<a,b><=60度.
即夹角的最大值是60度.
又|a|=1,|b|=1,
代入上式得到:k^2+2ka.b+1=3(1-2kab+k^2),即8ka.b=2+2k^2,
即a.b=(2+2k^2)/8k=(k^2+1)/4k,
(2)由于k>0,故a·b不=0,所以向量a和向量b不能垂直。
如果a,b平行,则a·b=(+/-)|a||b|
即(k^2+1)/4k=(+/-)1
k^2+1=(+/-)4k
k^2(-/+)4k+1=0
[k(-/+)2]^2=3
k(-/+)2=(+/-)根号3
又k>0,即k=2+根号3或2-根号3
(3)cos<a,b>=a.b/(|a||b|)=(2+2k^2)/8k=1/(4k)+k/4>=2根号(1/4k*k/4)=2*1/4=1/2
所以,<a,b><=60度.
即夹角的最大值是60度.
展开全部
1、│ka+b│^2=[根号3│a-kb│]^2
k^2a^2+b^2+2kab=3(a^2+k^2b^2-2kab)
k^2a^2+b^2+2kab=3(a^2+k^2b^2-2kab)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
显然
|a|=|b|=1
,
由于
a、b
夹角为
60°
,因此
a*b=|a|*|b|*cos60°=
1/2
,
已知等式两边平方得
(ka)^2+b^2+2ka*b=3(a^2+(kb)^2-2ka*b)
,
即
k^2+1+k=3(1+k^2-k)
,
化简得
k^2-2k+1=0
,分解得
(k-1)^2=0
,
所以
k=1
。
|a|=|b|=1
,
由于
a、b
夹角为
60°
,因此
a*b=|a|*|b|*cos60°=
1/2
,
已知等式两边平方得
(ka)^2+b^2+2ka*b=3(a^2+(kb)^2-2ka*b)
,
即
k^2+1+k=3(1+k^2-k)
,
化简得
k^2-2k+1=0
,分解得
(k-1)^2=0
,
所以
k=1
。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询