2个回答
展开全部
必修2知识点
1、功
力对物体所做的功等于力的大小、位移的大小、力和位移夹角的余弦三者的乘积。
功的定义式:
注意: 时, ;但 时, ,力不做功; 时, .
2、功率
功与完成这些功所用时间的比值。
平均功率: ;
功率是表示物体做功快慢的物理量。
力与速度方向一致时:P=Fv
3、重力势能 重力势能的变化与重力做功的关系
物体的重力势能等于它所受重力与所处高度的乘积, 。重力势能的值与所选取的参考平面有关。
重力势能的变化与重力做功的关系:重力做多少功重力势能就减少多少,克服重力做多少功重力势能就增加多少. 重力对物体所做的功等于物体重力势能的减少量: 。
重力做功的特点:重力对物体所做的功只与物体的起始位置有关,而跟物体的具体运动路径无关。
4、动能
物体由于运动而具有的能量。
物体质量越大,速度越大则物体的动能越大。
5、动能定理
合力在某个过程中对物体所做的功,等于物体在这个过程中动能的变化。
表达式: 或 。
6、机械能守恒定律
机械能:机械能是动能、重力势能、弹性势能的统称,可表示为:
E(机械能)=Ek(动能)+Ep(势能)
机械能守恒定律:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
,式中 是物体处于状态1时的势能和动能, 是物体处于状态2时的势能和动能。
7、用电火花计时器(或电磁打点计时器)验证机械能守恒定律
实验目的:通过对自由落体运动的研究验证机械能守恒定律。
速度的测量:做匀变速运动的纸带上某点的瞬时速度,等于相邻两点间的平均速度。
下落高度的测量:等于纸带上两点间的距离
比较V2与2gh相等或近似相等,则说明机械能守恒
8、能量守恒定律
能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。
9、能源 能量转化和转移的方向性
能源是人类可以利用的能量,是人类社会活动的物质基础。人类利用能源大致经历了三个时期,即柴薪时期、煤炭时期、石油时期。
能量的耗散:燃料燃烧时一旦把自己的热量释放出去,它就不会再次自动聚集起来供人类重新利用;电池中的化学能转化为电能,它又通过灯泡转化成内能和光能,热和光被其他物质吸收之后变成周围环境的内能,我们也无法把这些内能收集起来重新利用。这种现象叫做能量的耗散。能量耗散表明,在能源的利用过程中,即在能量的转化过程中,能量在数量上并未减少,但在可利用的品质上降低了,从便于利用变成不利于利用的了。能量的耗散从能量转化的角度反映出自然界中宏观过程的方向性。
10、运动的合成与分解
如果某物体同时参与几个运动,那么这物体的实际运动就叫做那几个运动的合运动,那几个运动叫做这个实际运动的分运动。已知分运动情况求合运动情况叫运动的合成,已知合运动情况求分运动情况叫运动的分解。
运动合成与分解的运算法则:运动的合成与分解是指描述物体运动的各物理量即位移、速度、加速度的合成与分解。由于它们都是矢量,所以它们都遵循矢量的合成与分解法则。
合运动和分运动的关系:
(1)等效性:各分运动的规律叠加起来与合运动规律有相同的效果。
(2)独立性:某方向上的运动不会因为其它方向上是否有运动而影响自己的运动性质。
(3)等时性:合运动通过合位移所需时间和对应的每个分运动通过分位移的时间相等,即各分运动总是同时开始,同时结束的。
11、平抛运动的规律
将物体以一定的水平速度抛出,在不计空气阻力的情况下,物体所做的运动。
平抛运动的特点:(1)加速度a=g恒定,方向竖直向下;(2)运动轨迹是抛物线。
平抛运动的处理方法:平抛运动可以分解为水平方向上的匀速直线运动和竖直方向上的自由落体运动。x=v0t y= gt2
12、匀速圆周运动
质点沿圆周运动,如果在相等的时间里通过的圆弧长度都相等,这种运动就叫做匀速圆周运动。
注意匀速圆周运动不是匀速运动,是曲线运动,速度方向不断变化.
13、线速度、角速度和周期
线速度:物体在某时间内通过的弧长与所用时间的比值,其方向在圆周的切线方向上。
表达式:
角速度:物体在某段时间内通过的角度与所用时间的比值。
表达式: ,其单位为弧度每秒, 。
周期:匀速运动的物体运动一周所用的时间。
频率: ,单位:赫兹(HZ)
线速度、角速度、周期间的关系:
。
14、向心加速度
做匀速圆周运动的物体,加速度方向指向圆心,这个加速度叫向心加速度。
大小:
方向:指向圆心。
向心加速度是描述匀速圆周运动中物体线速度变化快慢的物理量
15、向心力
产生向心加速度的力。
向心力的方向:指向圆心,与线速度的方向垂直。
向心力的大小:做匀速圆周运动所需的向心力的大小为
向心力的作用:只改变速度的方向,不改变速度的大小。
向心力是效果力。在对物体进行受力分析时,不能认为物体多受了个向心力。向心力是物体受到的某一个力或某一个力的分力或某几个力的合力.
16、万有引力定律(A)
自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体质量的乘积成正比,跟它们距离的二次方成反比。
表达式:
17、人造地球卫星(A)
卫星环绕速度v、角速度 、周期T与半径 的关系:
由 ,可得:
,r越大,v越小;
,r越大, 越小;
,r越大,T越大。
18、宇宙速度(A)
第一宇宙速度(环绕速度): ;
第二宇宙速度(脱离速度): ;
第三宇宙速度(逃逸速度): 。
会求第一宇宙速度:
卫星贴近地球表面飞行
地球表面近似有
则有
19、经典力学的局限性
牛顿运动定律只适用于解决宏观问题,不适用于高速运动问题,不适用于微观世界。
补充:曲线运动速度方向:质点在某一点的速度,沿曲线在这一点的切线方向
曲线运动的条件: 当物体所受合力的方向跟它的速度方向不在同一直线上时,物体做曲线运动.
补充一下吧
1、功
力对物体所做的功等于力的大小、位移的大小、力和位移夹角的余弦三者的乘积。
功的定义式:
注意: 时, ;但 时, ,力不做功; 时, .
2、功率
功与完成这些功所用时间的比值。
平均功率: ;
功率是表示物体做功快慢的物理量。
力与速度方向一致时:P=Fv
3、重力势能 重力势能的变化与重力做功的关系
物体的重力势能等于它所受重力与所处高度的乘积, 。重力势能的值与所选取的参考平面有关。
重力势能的变化与重力做功的关系:重力做多少功重力势能就减少多少,克服重力做多少功重力势能就增加多少. 重力对物体所做的功等于物体重力势能的减少量: 。
重力做功的特点:重力对物体所做的功只与物体的起始位置有关,而跟物体的具体运动路径无关。
4、动能
物体由于运动而具有的能量。
物体质量越大,速度越大则物体的动能越大。
5、动能定理
合力在某个过程中对物体所做的功,等于物体在这个过程中动能的变化。
表达式: 或 。
6、机械能守恒定律
机械能:机械能是动能、重力势能、弹性势能的统称,可表示为:
E(机械能)=Ek(动能)+Ep(势能)
机械能守恒定律:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
,式中 是物体处于状态1时的势能和动能, 是物体处于状态2时的势能和动能。
7、用电火花计时器(或电磁打点计时器)验证机械能守恒定律
实验目的:通过对自由落体运动的研究验证机械能守恒定律。
速度的测量:做匀变速运动的纸带上某点的瞬时速度,等于相邻两点间的平均速度。
下落高度的测量:等于纸带上两点间的距离
比较V2与2gh相等或近似相等,则说明机械能守恒
8、能量守恒定律
能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。
9、能源 能量转化和转移的方向性
能源是人类可以利用的能量,是人类社会活动的物质基础。人类利用能源大致经历了三个时期,即柴薪时期、煤炭时期、石油时期。
能量的耗散:燃料燃烧时一旦把自己的热量释放出去,它就不会再次自动聚集起来供人类重新利用;电池中的化学能转化为电能,它又通过灯泡转化成内能和光能,热和光被其他物质吸收之后变成周围环境的内能,我们也无法把这些内能收集起来重新利用。这种现象叫做能量的耗散。能量耗散表明,在能源的利用过程中,即在能量的转化过程中,能量在数量上并未减少,但在可利用的品质上降低了,从便于利用变成不利于利用的了。能量的耗散从能量转化的角度反映出自然界中宏观过程的方向性。
10、运动的合成与分解
如果某物体同时参与几个运动,那么这物体的实际运动就叫做那几个运动的合运动,那几个运动叫做这个实际运动的分运动。已知分运动情况求合运动情况叫运动的合成,已知合运动情况求分运动情况叫运动的分解。
运动合成与分解的运算法则:运动的合成与分解是指描述物体运动的各物理量即位移、速度、加速度的合成与分解。由于它们都是矢量,所以它们都遵循矢量的合成与分解法则。
合运动和分运动的关系:
(1)等效性:各分运动的规律叠加起来与合运动规律有相同的效果。
(2)独立性:某方向上的运动不会因为其它方向上是否有运动而影响自己的运动性质。
(3)等时性:合运动通过合位移所需时间和对应的每个分运动通过分位移的时间相等,即各分运动总是同时开始,同时结束的。
11、平抛运动的规律
将物体以一定的水平速度抛出,在不计空气阻力的情况下,物体所做的运动。
平抛运动的特点:(1)加速度a=g恒定,方向竖直向下;(2)运动轨迹是抛物线。
平抛运动的处理方法:平抛运动可以分解为水平方向上的匀速直线运动和竖直方向上的自由落体运动。x=v0t y= gt2
12、匀速圆周运动
质点沿圆周运动,如果在相等的时间里通过的圆弧长度都相等,这种运动就叫做匀速圆周运动。
注意匀速圆周运动不是匀速运动,是曲线运动,速度方向不断变化.
13、线速度、角速度和周期
线速度:物体在某时间内通过的弧长与所用时间的比值,其方向在圆周的切线方向上。
表达式:
角速度:物体在某段时间内通过的角度与所用时间的比值。
表达式: ,其单位为弧度每秒, 。
周期:匀速运动的物体运动一周所用的时间。
频率: ,单位:赫兹(HZ)
线速度、角速度、周期间的关系:
。
14、向心加速度
做匀速圆周运动的物体,加速度方向指向圆心,这个加速度叫向心加速度。
大小:
方向:指向圆心。
向心加速度是描述匀速圆周运动中物体线速度变化快慢的物理量
15、向心力
产生向心加速度的力。
向心力的方向:指向圆心,与线速度的方向垂直。
向心力的大小:做匀速圆周运动所需的向心力的大小为
向心力的作用:只改变速度的方向,不改变速度的大小。
向心力是效果力。在对物体进行受力分析时,不能认为物体多受了个向心力。向心力是物体受到的某一个力或某一个力的分力或某几个力的合力.
16、万有引力定律(A)
自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体质量的乘积成正比,跟它们距离的二次方成反比。
表达式:
17、人造地球卫星(A)
卫星环绕速度v、角速度 、周期T与半径 的关系:
由 ,可得:
,r越大,v越小;
,r越大, 越小;
,r越大,T越大。
18、宇宙速度(A)
第一宇宙速度(环绕速度): ;
第二宇宙速度(脱离速度): ;
第三宇宙速度(逃逸速度): 。
会求第一宇宙速度:
卫星贴近地球表面飞行
地球表面近似有
则有
19、经典力学的局限性
牛顿运动定律只适用于解决宏观问题,不适用于高速运动问题,不适用于微观世界。
补充:曲线运动速度方向:质点在某一点的速度,沿曲线在这一点的切线方向
曲线运动的条件: 当物体所受合力的方向跟它的速度方向不在同一直线上时,物体做曲线运动.
补充一下吧
参考资料: 忘了那下的
展开全部
一, 质点的运动(1)----- 直线运动
1)匀变速直线运动
1.平均速度V平=S / t (定义式) 2.有用推论Vt 2 –V0 2=2as
3.中间时刻速度 Vt / 2= V平=(V t + V o) / 2
4.末速度V=Vo+at
5.中间位置速度Vs / 2=[(V_o2 + V_t2) / 2] 1/2
6.位移S= V平t=V o t + at2 / 2=V t / 2 t
7.加速度a=(V_t - V_o) / t 以V_o为正方向,a与V_o同向(加速)a>0;反向则a<0
8.实验用推论ΔS=aT2 ΔS为相邻连续相等时间(T)内位移之差
9.主要物理量及单位:初速(V_o):m/ s 加速度(a):m/ s2 末速度(Vt):m/ s
时间(t):秒(s) 位移(S):米(m) 路程:米
速度单位换算: 1m/ s=3.6Km/ h
注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(V_t - V_o)/ t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/
2) 自由落体
1.初速度V_o =0 2.末速度V_t = g t
3.下落高度h=gt2 / 2(从V_o 位置向下计算)
4.推论V t2 = 2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。
(2)a=g=9.8≈10m/s2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。
3) 竖直上抛
1.位移S=V_o t – gt 2 / 2 2.末速度V_t = V_o – g t (g=9.8≈10 m / s2 )
3.有用推论V_t 2 - V_o 2 = - 2 g S 4.上升最大高度H_max=V_o 2 / (2g) (抛出点算起)
5.往返时间t=2V_o / g (从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。
平抛运动
1.水平方向速度V_x= V_o 2.竖直方向速度V_y=gt
3.水平方向位移S_x= V_o t 4.竖直方向位移S_y=gt2 / 2
5.运动时间t=(2S_y / g)1/2 (通常又表示为(2h/g) 1/2 )
6.合速度V_t=(V_x2+V_y2) 1/2=[ V_o2 + (gt)2 ] 1/2
合速度方向与水平夹角β: tgβ=V_y / V_x = gt / V_o
7.合位移S=(S_x2+ S_y2) 1/2 ,
位移方向与水平夹角α: tgα=S_y / S_x=gt / (2V_o)
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(S_y)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动
1.线速度V=s / t=2πR / T 2.角速度ω=Φ / t = 2π / T= 2πf
3.向心加速度a=V2 / R=ω2 R=(2π/T)2 R 4.向心力F心=mV2 / R=mω2 R=m(2π/ T)2 R
5.周期与频率T=1 / f 6.角速度与线速度的关系V=ωR
7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)
8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)
周期(T):秒(s) 转速(n):r / s 半径(R):米(m) 线速度(V):m / s
角速度(ω):rad / s 向心加速度:m / s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力
1.开普勒第三定律T2 / R3=K(4π2 / GM) R:轨道半径 T :周期 K:常量(与行星质量无关)
2.万有引力定律F=Gm_1m_2 / r2 G=6.67×10-11N·m2 / kg2方向在它们的连线上
3.天体上的重力和重力加速度GMm/R2=mg g=GM/R2 R:天体半径(m)
4.卫星绕行速度、角速度、周期 V=(GM/R)1/2
ω=(GM/R3)1/2 T=2π(R3/GM)1/2
5.第一(二、三)宇宙速度V_1=(g地
r地)1/2=7.9Km/s V_2=11.2Km/s V_3=16.7Km/s
6.地球同步卫星GMm / (R+h)2=m4π2 (R+h) / T2
h≈36000 km/h:距地球表面的高度
注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。
三、 力(常见的力、力矩、力的合成与分解)
1)常见的力
1.重力G=mg方向竖直向下g=9.8 m/s2 ≈10 m/s2 作用点在重心 适用于地球表面附近
2.胡克定律F=kX 方向沿恢复形变方向 k:劲度系数(N/m) X:形变量(m)
3.滑动摩擦力f=μN 与物体相对运动方向相反 μ:摩擦因数 N:正压力(N)
4.静摩擦力0≤f静≤fm 与物体相对运动趋势方向相反 fm为最大静摩擦力
5.万有引力F=G m_1m_2 / r2 G=6.67×10-11 N·m2/kg2 方向在它们的连线上
希望对你有用 O(∩_∩)O~
1)匀变速直线运动
1.平均速度V平=S / t (定义式) 2.有用推论Vt 2 –V0 2=2as
3.中间时刻速度 Vt / 2= V平=(V t + V o) / 2
4.末速度V=Vo+at
5.中间位置速度Vs / 2=[(V_o2 + V_t2) / 2] 1/2
6.位移S= V平t=V o t + at2 / 2=V t / 2 t
7.加速度a=(V_t - V_o) / t 以V_o为正方向,a与V_o同向(加速)a>0;反向则a<0
8.实验用推论ΔS=aT2 ΔS为相邻连续相等时间(T)内位移之差
9.主要物理量及单位:初速(V_o):m/ s 加速度(a):m/ s2 末速度(Vt):m/ s
时间(t):秒(s) 位移(S):米(m) 路程:米
速度单位换算: 1m/ s=3.6Km/ h
注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(V_t - V_o)/ t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/
2) 自由落体
1.初速度V_o =0 2.末速度V_t = g t
3.下落高度h=gt2 / 2(从V_o 位置向下计算)
4.推论V t2 = 2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。
(2)a=g=9.8≈10m/s2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。
3) 竖直上抛
1.位移S=V_o t – gt 2 / 2 2.末速度V_t = V_o – g t (g=9.8≈10 m / s2 )
3.有用推论V_t 2 - V_o 2 = - 2 g S 4.上升最大高度H_max=V_o 2 / (2g) (抛出点算起)
5.往返时间t=2V_o / g (从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。
平抛运动
1.水平方向速度V_x= V_o 2.竖直方向速度V_y=gt
3.水平方向位移S_x= V_o t 4.竖直方向位移S_y=gt2 / 2
5.运动时间t=(2S_y / g)1/2 (通常又表示为(2h/g) 1/2 )
6.合速度V_t=(V_x2+V_y2) 1/2=[ V_o2 + (gt)2 ] 1/2
合速度方向与水平夹角β: tgβ=V_y / V_x = gt / V_o
7.合位移S=(S_x2+ S_y2) 1/2 ,
位移方向与水平夹角α: tgα=S_y / S_x=gt / (2V_o)
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(S_y)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动
1.线速度V=s / t=2πR / T 2.角速度ω=Φ / t = 2π / T= 2πf
3.向心加速度a=V2 / R=ω2 R=(2π/T)2 R 4.向心力F心=mV2 / R=mω2 R=m(2π/ T)2 R
5.周期与频率T=1 / f 6.角速度与线速度的关系V=ωR
7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)
8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)
周期(T):秒(s) 转速(n):r / s 半径(R):米(m) 线速度(V):m / s
角速度(ω):rad / s 向心加速度:m / s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力
1.开普勒第三定律T2 / R3=K(4π2 / GM) R:轨道半径 T :周期 K:常量(与行星质量无关)
2.万有引力定律F=Gm_1m_2 / r2 G=6.67×10-11N·m2 / kg2方向在它们的连线上
3.天体上的重力和重力加速度GMm/R2=mg g=GM/R2 R:天体半径(m)
4.卫星绕行速度、角速度、周期 V=(GM/R)1/2
ω=(GM/R3)1/2 T=2π(R3/GM)1/2
5.第一(二、三)宇宙速度V_1=(g地
r地)1/2=7.9Km/s V_2=11.2Km/s V_3=16.7Km/s
6.地球同步卫星GMm / (R+h)2=m4π2 (R+h) / T2
h≈36000 km/h:距地球表面的高度
注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。
三、 力(常见的力、力矩、力的合成与分解)
1)常见的力
1.重力G=mg方向竖直向下g=9.8 m/s2 ≈10 m/s2 作用点在重心 适用于地球表面附近
2.胡克定律F=kX 方向沿恢复形变方向 k:劲度系数(N/m) X:形变量(m)
3.滑动摩擦力f=μN 与物体相对运动方向相反 μ:摩擦因数 N:正压力(N)
4.静摩擦力0≤f静≤fm 与物体相对运动趋势方向相反 fm为最大静摩擦力
5.万有引力F=G m_1m_2 / r2 G=6.67×10-11 N·m2/kg2 方向在它们的连线上
希望对你有用 O(∩_∩)O~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |