高数中关于二重积分的计算2
计算积分∫∫e^y^2dxdy,其中D是顶点为(0,0)(0,1)(1,1)的三角形区域。求具体的解算过程。...
计算积分∫∫e^y^2dxdy ,其中D是顶点为(0,0)(0,1)(1,1) 的三角形区域。求具体的解算过程。
展开
展开全部
D的区域为y∈(0,1),x∈(0,y)。
先对x后对y进行积分,原式=∫dy∫e^y^2dx,前面上下限分别为1和0,后面上下限分别为y和0。
因后面对x积分,y应看做常数,这样∫e^y^2dx=(e^y^2)*x,再把上下限代入就是=(e^y^2)*y-(e^y^2)*0=(e^y^2)*y。代入原式就是=∫(e^y^2)*ydy=0.5∫(e^y^2)d(y^2)=0.5(e^y^2),再把上下限1,0代入就是(e-1)/2,
不知这样说你能明白不
先对x后对y进行积分,原式=∫dy∫e^y^2dx,前面上下限分别为1和0,后面上下限分别为y和0。
因后面对x积分,y应看做常数,这样∫e^y^2dx=(e^y^2)*x,再把上下限代入就是=(e^y^2)*y-(e^y^2)*0=(e^y^2)*y。代入原式就是=∫(e^y^2)*ydy=0.5∫(e^y^2)d(y^2)=0.5(e^y^2),再把上下限1,0代入就是(e-1)/2,
不知这样说你能明白不
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |