2个回答
展开全部
两边取对数:lny=xln(x^x)
令z=x^x,则 lny=xln(z)
求导:y'/y=ln(z)+xz'/z
而ln(z)=xlnx,求导得:z'=(1+lnx)z
∴y'/y=xlnx+x(1+lnx)
∴y'=x^x^x[xlnx+x(1+lnx)]
令z=x^x,则 lny=xln(z)
求导:y'/y=ln(z)+xz'/z
而ln(z)=xlnx,求导得:z'=(1+lnx)z
∴y'/y=xlnx+x(1+lnx)
∴y'=x^x^x[xlnx+x(1+lnx)]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询