已知等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的前n项和为Tn,且{an}、{bn
已知等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的前n项和为Tn,且{an}、{bn}满足条件:S4=4a5-2,Tn=2bn-2.(Ⅰ)求公差d的值;(...
已知等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的前n项和为Tn,且{an}、{bn}满足条件:S4=4a5-2,Tn=2bn-2.
(Ⅰ)求公差d的值;
(Ⅱ)若对任意的n∈N*,都有Sn≥S5成立,求a1的取直范围;
(Ⅲ)若a1=-4,令cn=anbn,求数列{cn}的前n项
大神们 我很急啊 速度 展开
(Ⅰ)求公差d的值;
(Ⅱ)若对任意的n∈N*,都有Sn≥S5成立,求a1的取直范围;
(Ⅲ)若a1=-4,令cn=anbn,求数列{cn}的前n项
大神们 我很急啊 速度 展开
2个回答
展开全部
(1)
S4=4a5-2
4a1+4×3d/2=4(a1+4d)-2
整理,得
10d=2
d=1/5
(2)
Sn≥S5,即当n=5时,数列前n项和最小,若首项a1≥0,由于公差d=1/5>0,数列前n项和随n增大单调递增,不满足题意,因此首项a1<0,要Sn≥S5,只需a5≤0 a6≥0
a1+4d≤0 a1≤-4d a1≤-4/5
a1+5d≥0 a1≥-5d a1≥-1
综上,得-1≤a1≤-4/5
(3)
a1=-4 an=a1+(n-1)d=-4+(n-1)/5=n/5 -21/5
n=1时,b1=T1=2b1-2 b1=2
n≥2时,bn=Tn-T(n-1)=2bn-2-2b(n-1)+2
bn=2b(n-1),公比q=bn/b(n-1)=2
bn=2×2^(n-1)=2ⁿ
cn=anbn=(n/5)2ⁿ -(21/5)2ⁿ=(1/5)×n×2ⁿ-(21/5)2ⁿ
Cn=(1/5)(1×2+2×2^2+3×2^3+...+n×2ⁿ)-(21/5)(2+2^2+...+2ⁿ)
令Kn=1×2+2×2^2+3×2^3+...+n×2ⁿ
则2Kn=1×2^2+2×2^3+...+(n-1)×2ⁿ+n×2^(n+1)
Kn-2Kn=-Kn=2+2^2+...+2ⁿ-n×2^(n+1)
=2×(2ⁿ-1)/(2-1) -n×2^(n+1)
=(1-n)×2^(n+1) -2
Kn=(n-1)×2^(n+1)+2
Cn=(1/5)Kn-(21/5)(2+2^2+...+2ⁿ)
=(1/5)[(n-1)×2^(n+1)+2]-(21/5)×2×(2ⁿ-1)/(2-1)
=(1/5)[(n-1)×2^(n+1)+2]-(21/5)[2^(n+1) -2]
=[(n-22)×2^(n+1) +44]/5
S4=4a5-2
4a1+4×3d/2=4(a1+4d)-2
整理,得
10d=2
d=1/5
(2)
Sn≥S5,即当n=5时,数列前n项和最小,若首项a1≥0,由于公差d=1/5>0,数列前n项和随n增大单调递增,不满足题意,因此首项a1<0,要Sn≥S5,只需a5≤0 a6≥0
a1+4d≤0 a1≤-4d a1≤-4/5
a1+5d≥0 a1≥-5d a1≥-1
综上,得-1≤a1≤-4/5
(3)
a1=-4 an=a1+(n-1)d=-4+(n-1)/5=n/5 -21/5
n=1时,b1=T1=2b1-2 b1=2
n≥2时,bn=Tn-T(n-1)=2bn-2-2b(n-1)+2
bn=2b(n-1),公比q=bn/b(n-1)=2
bn=2×2^(n-1)=2ⁿ
cn=anbn=(n/5)2ⁿ -(21/5)2ⁿ=(1/5)×n×2ⁿ-(21/5)2ⁿ
Cn=(1/5)(1×2+2×2^2+3×2^3+...+n×2ⁿ)-(21/5)(2+2^2+...+2ⁿ)
令Kn=1×2+2×2^2+3×2^3+...+n×2ⁿ
则2Kn=1×2^2+2×2^3+...+(n-1)×2ⁿ+n×2^(n+1)
Kn-2Kn=-Kn=2+2^2+...+2ⁿ-n×2^(n+1)
=2×(2ⁿ-1)/(2-1) -n×2^(n+1)
=(1-n)×2^(n+1) -2
Kn=(n-1)×2^(n+1)+2
Cn=(1/5)Kn-(21/5)(2+2^2+...+2ⁿ)
=(1/5)[(n-1)×2^(n+1)+2]-(21/5)×2×(2ⁿ-1)/(2-1)
=(1/5)[(n-1)×2^(n+1)+2]-(21/5)[2^(n+1) -2]
=[(n-22)×2^(n+1) +44]/5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询